
 Studies
 in Quantitative Linguistics

 7

 Fan Fengxiang

 Quantitative Linguistic

 Computing with Perl

 RAM - Verlag

Quantitative Linguistic
 Computing with Perl

by

Fan Fengxiang

2010
RAM-Verlag

Studies in quantitative linguistics

Editors

 Fengxiang Fan (fanfengxiang@yahoo.com)
 Emmerich Kelih (emmerich.kelih@uni-graz.at)
 Reinhard Köhler (koehler@uni-trier.de)
 Ján Mačutek (jmacutek@yahoo.com)
 Eric S. Wheeler (wheeler@ericwheeler.ca)

1. U. Strauss, F. Fan, G. Altmann, Problems in quantitative linguistics 1. 2008,

VIII + 134 pp.
2. V. Altmann, G. Altmann, Anleitung zu quantitativen Textanalysen. Methoden

und Anwendungen. 2008, IV+193 pp.
3. I.-I. Popescu, J. Mačutek, G. Altmann, Aspects of word frequencies. 2009, IV

+198 pp.
4. R. Köhler, G. Altmann, Problems in quantitative linguistics 2. 2009, VII + 142

pp.
5. R. Köhler (ed.), Issues in Quantitative Linguistics. 2009, VI + 205 pp.
6. A. Tuzzi, I.-I. Popescu, G.Altmann, Quantitative aspects of Italian texts. 2010,

IV+161 pp.
7. F. Fan, Quantitative linguistic computing with Perl. 2010, VIII + 205 pp.

© Copyright 2011 by RAM-Verlag, D-58515 Lüdenscheid

RAM-Verlag
Stüttinghauser Ringstr. 44
D-58515 Lüdenscheid
RAM-Verlag@t-online.de
http://ram-verlag.de

mailto:fanfengxiang@yahoo.com
mailto:emmerich.kelih@uni-graz.at
mailto:koehler@uni-trier.de
mailto:jmacutek@yahoo.com
mailto:wheeler@ericwheeler.ca
mailto:RAM-Verlag@t-online.de

Preface

Empirical research in linguistics, in particular in quantitative linguistics, relies to
a high degree on the acquisition of large amounts of appropriate data and, as a
matter of course, on sometimes intricate computation. The last decades with the
advent of faster and faster electronic machinery and at the same time growing
storage capacities at falling prices contributed, together with advances in lin-
guistic theory and analytic methods, to the availability of suitable linguistic
material for all kinds of investigations on all levels of analysis.
 Ideally, a researcher in quantitative linguistics has enough programming
knowledge to acquire the data needed for his/her specific study. This is, however,
not always the case. If professional programmers can be asked for help, most
problems may be overcome; however, also this way is not always possible. And
sometimes, it may be more awkward to explain a task than do perform it.
 The selection of the appropriate programming language should not be
conducted by taste or familiarity (as it is, unfortunately, very often even among
programmers); instead, at least the following criteria should be taken into ac-
count:

1. Quality of the language. There is a number of quality-related properties of

a programming language such as ability of preventing programming
mistakes, readability of the code, changeability, testability, learnability.
Unfortunately, these and other properties are not independent of each
other; some of them compete (e.g. efficiency is always a competitor of
most other properties) whereas others co-operate (e.g. readability ad-
vances most of the others). A programmer has to decide on priorities of
the quality properties with respect to the individual task and application.

2. Nature of the problem. Every programming language has advantages and
disadvantages also with respect to the task to be performed. One of the
criteria often cited is the old distinction between low-level (close to the
basic processor instructions and to the memory organisation of the
computer) and high-level languages (with concepts close to the problems
or algorithms). However, matters of efficiency etc. do not play a role any
more (at least in the overwhelming majority of applications) since the
compilers and their optimisers produce better code than most human
programmers would be able to do. But there are still concepts and tasks
that can be expressed in one language better than in another one, e.g. only
few programmers would prefer a scripting language for the programming
a data base.

3. Size and complexity of the problem. The larger a problem and the higher
its complexity the more relevant become the quality properties of the
language. If, e.g. several persons work on the same project, readability of
the code is of fundamental importance but even if a single programmer

 II
does all the coding of a complex problem he/she will encounter problems
with his own code after some time if the programming language allows
code in a less readable form. In any case, corrections, changes, and
maintenance of a program depend crucially on some of the quality prop-
erties.

4. Security aspects. This is a simple matter: If the application you write is
supposed to run in a environment that is accessible to potential attacks
(e.g., the Internet or a computer network or if other users have access to
the computer) and if the data your program works with should be
protected, then a special focus should be put on security properties of the
programming language. Scripting languages, e.g., are known to be frail, as
a rule. You should make sure that the language you use has at least
protection mechanisms you can switch on. Surprisingly, this aspect is very
often neglected – even by institutions such as banks (Internet banking).

5. Reliability of the compiler/interpreter/libraries. Many popular languages
are not defined. Instead, ‘reference implementations’ are offered. How-
ever, to be sure how a language element works you would have try it out
in every possible form of use and combination with other elements – an
unrealistic idea. Another aspect is even more significant in practice: Some
languages, among them some of the currently most popular ones, are
subject to substantial changes every now and then. The user of such a
language is witness and victim of a ripening process (or mere experiment-
ation): If your program will work with the next version of the language, is
more or less a matter of chance. You should consider how much harm
such a situation would do to your project if you decide to use a language
that is not defined.

6. Frequency of application. It matters whether your program is an ad-hoc
solution and will be used just once or a few times to evaluate some data
and then will be discarded or whether it is meant to be useful for a longer
time and may be changed and adapted for varying conditions. In the first
case, not so much value is to be set on quality properties of the language;
immediate availability of a practical solution may then come into fore-
ground. In the latter case, however, readability, changeability and other
properties play a bigger role.

7. Intended users of the software product. Similarly, if you alone will use a
program, some disadvantages such as missing robustness or a bad user
interface would not constitute a serious problem as you will exactly know
which behaviour you have to expect and how to circumvent inelegance or
even mistakes. If, on the other hand, an unknown number of unknown
persons will use it you should base you product on reliable tools, among
them the language you formulate your solution in.

The main problem, however, quantitative linguists will have to face – independ-
ent of how they are inclined to weight the criteria discussed above – is probably

 III
that they fail to have an overview about programming languages and their pro’s
and con’s. Whenever a programming layman is asked for advice the probability
is high that the answer will depend on personal taste and familiarity with a
language and possibly on its current popularity. You should, at least, know what
criteria to base your decision on; with an idea of your priorities at hand and after
discussing them with a programming expert, you can increase the chance to
obtain a good hint.

Perl belongs to the so-called scripting languages. To run a program written in
Perl you need the Perl interpreter; it has to be installed on your computer before
the program can be executed. The reason is that such a program is interpreted,
line by line, each time it is started as opposed to compiled programs which can
run without any interpreter. There are, again, pro’s and con’s of either solution.
Scripting languages have, e.g. the advantage that a program can change its own
logic and easily adapt its data structures while it runs, to an extent which is
impossible with compiled programs – a comfortable but also potentially dan-
gerous facility.
 Linguists fancy, in particular, the powerful language elements of Perl,
which enable a programmer to write powerful programs in very short time. This
property is especially useful for string and text manipulation and analysis
because many ready-made tools for string handling are ‘innate’ to the language.
Advanced programmers will find it even more useful for Internet programming.
A clear disadvantage is the not so readable program text which makes finding
and correcting of mistakes sometimes awkward in long and complex programs.
Therefore, careful formulations and exhaustive comments within the program
code are strongly recommended. If these caveats are taken into account Perl can
be used with much success with little effort – and make a lot of fun.

Reinhard Köhler

Table of Contents
Preface .. I
1 Introduction ... 1

1.1 Quantitative linguistics and Perl... 1
1.2 Characteristics of this book and its intended readers 2
1.3 Downloading and installation... 3
1.4 Program editor .. 7
1.5 Conventions used in this book.. 8

2 Perl variables and operators .. 11
2.1 Perl variables .. 11
2.2 Value assignment to variables .. 11
2.3 Perl numeric operators and functions ... 13

2.3.1 Math operators.. 13
2.3.2 Math functions.. 16
2.3.3 Numeric comparison operators .. 19

2.4 String operators and string comparison operators 21
2.4.1 String operators .. 21
2.4.2 String comparison operators... 22

2.5 The logical operator.. 23
Exercises ... 24

3 Input and output ... 26
3.1 Input at the command line .. 26

3.1.1 The use of @ARGV... 26
3.1.2 The use of STDIN .. 27
3.1.3 Command line file input... 28

3.2 Inputting files inside a program.. 29
3.3 Some string manipulation functions ... 31
3.4 Applications.. 34
Exercises ... 40

4 Regular expressions: basic structure... 41
4.1 Operators for regular expressions... 41

4.1.1 =~ and m// .. 41
4.1.2 s/// ... 42
4.1.3 tr/// .. 45

4.2 Regular expression quantifiers and other operators 49
4.2.1 The general quantifiers and wild card.. 49
4.2.2 The greediness of the quantifiers * and + 52
4.2.3 The alternative operator, anchors and the escape operator 53

4. 3 Applications... 55
4.3.1 Text tokenizer ... 55
4.3.2 Computing syllabic word length .. 56
4.3.3 Removal of HTML codes in texts .. 57

Exercises ... 60

 VI

5 Regular expressions: advanced topics... 61
5.1 Metacharacters for regular expressions .. 61
5.2 Special variables ... 63
5.3 Back referencing... 65
5.4 Quantifying expressions ... 66
5.5 String manipulation functions and the for program control structure 68
5.6 Applications .. 71

5.6.1 Extraction of POS tags ... 71
5.6.2 Making concordance for a text... 72
5.6.3 Extraction of lexical bundles from texts. 73
5.6.4 A Chinese tokenizer.. 75

Exercises ... 77
6 Arrays ... 79

6.1 Array creation ... 79
6.1.1 One dimensional arrays.. 79
6.1.2 Multi-dimensional arrays ... 82
6.1.3 Converting texts into arrays ... 84

6.2 Functions for array operations.. 85
6.2.1 Functions for array input and output.. 85
6.2.2 Array insertion, truncation and deletion....................................... 88
6.2.3 Sorting an array .. 89
6.2.4 The anonymous variable and the join, map and grep functions... 91

6.3 Combining identical array elements and random sampling from an array
.. 94

6.4 Applications.. 97
6.4.1 Selecting words from a wordlist .. 97
6.4.2 Turning a text into bigrams .. 98
6.4.3 Turning a text into a list of word types with frequencies........... 100
6.4.4 Computing sentence length distribution..................................... 101

Exercises ... 102
7 Hash tables... 103

7.1 Hash input and output... 103
7.1.1 Manual input and output .. 103
7.1.2 Hash input and output using arrays and functions 106
7.1.3 The use of values(), each(), exist() and delete()......................... 110

7. 2 Hash operations ... 112
7.2.1 Converting hash elements into an array 112
7.2.2 Combining two or more hashes together 113
7.2.3 Hash comparisons .. 115
7.2.4 Computing value frequencies... 117

7.3 Applications .. 118
7.3.1 Computing per word entropy of English.................................... 118
7.3.2 Making a word frequency spectrum... 119

 VII

7.3.3 Lemmatization.. 120
7.3.4 Lexical comparison between two texts 122

Exercises ... 124
8 Subroutines and modules ... 126

8.1 Subroutines ... 126
8.1.1 The basic structure ... 126
8.1.2 Parameters of subroutines .. 127
8.1.3 The use of return() in subroutines.. 129
8.1.4 Localization of variables in subroutines 130

8.2 Modules .. 131
8.3 References... 135

8.3.1 Making references .. 135
8.3.2 Dereferencing for scalar variables and references 136
8.3.3 Dereferencing for arrays .. 137
8.3.4 Dereferencing for hashes.. 139

8.4 Use of references in subroutines and modules 140
8.5 Applications.. 142

8.5.1 Computing arc length ... 143
8.5.2 A module for removing non-alphanumeric characters 144
8.5.3 A lexical comparison program ... 145

Exercises ... 149
9 Directory and file management ... 150

9.1 Directory management ... 150
9.2 File management... 151
9.3 Formatting output files ... 154

9.3.1 Outputting data in the original format.. 154
9.3.2 Arranging data in left-justified columns 155
9.3.3 Arranging data in right-justified columns 156
9.3.4 Arranging data in centre-justified columns................................ 157
9.3.5 Formatting data that has line breaks... 159
9.3.6 Producing page heading and paginating output files 161

9.4 Applications .. 164
9.4.1 A page-formatting program.. 164
9.4.2 Computing vocabulary growth and number of hapax legomena166
9.4.3 A program for computing word range.. 171

Exercises ... 175
Appendix Model answers to the exercises.. 177

Exercises of Chapter 2.. 177
Exercises of Chapter 3.. 177
Exercises of Chapter 4.. 181
Exercises of Chapter 5.. 183
Exercises of Chapter 6.. 186
Exercises of Chapter 7.. 188

 VIII

Exercises of Chapter 8.. 192
Exercises of Chapter 9.. 195

Index .. 202

1 Introduction

1.1 Quantitative linguistics and Perl

Once the venerable quantitative linguist Professor Gabriel Altmann was asked by
a physicist as to the line of his work; when he replied quantitative linguistics, the
inquirer’s observation was: Oh, you count letters. This remark is not far off the
point. Quantitative linguists do count letters, for example, in the computation of
letter graphemic load, letter phonemic load, letter frequency, letter utility and so
on. Apart from letter counting, quantitative linguists practically count anything
else in language, from phoneme, morpheme, syllable, word, phrases and so on up
to clause and sentence, measuring their length, the possible senses they signify
etc. The results of the counting are used to develop mathematic models or laws
describing the distributions of these components of language or their interrelat-
ionships, or test such models, laws or interrelationships, characterizing a text,
language etc. Take the computation of Yule’s K as an example, which can be
used as a measure of vocabulary richness and of author identification. It’s com-
puted as follows:

2

2),(
10000

N

NNmVm
K m∑ −
=

where m is the word frequency class, V(m, N) the number of words with fre-
quency m, and N the number of words in the text in question. Suppose we want
to compute K for Lewis Carroll’s Alice’s Adventures in Wonderland, which has
27,285 word tokens and 2,570 word types. It would take quite a long while to get
K manually, and the process would be very tedious and error prone. Imagine
doing this by hand to a longer text, e.g., Dickens’ 184,282-word Great Expect-
ations!
 In this day and age, apart from a pencil, an eraser and a wad of paper, quan-
titative linguists also have a powerful weapon under their belt: the computer.
There are several powerful computer software packages that can be used for
language studies, e.g., WordSmith, Tact, OCP, Lexa, Antconc, and so on. How-
ever, software packages like the above were designed for specific tasks and can’t
fully satisfy the needs of quantitative linguists. Possibly a linguist would have
difficulty finding a software package to compute Yule’s K for a million-word
text automatically at one sitting, to say nothing of the many ad hoc data- and
computation-intensive research inspirations popping out just off the top of the
head of a linguist. In such cases, a programming language is needed.
 There are many languages that can be used for linguistic purposes. For
example, VB, C, C++, SNOBOL4/SPITBOL, PYTHON, JAVA, ICON, the
computer language attached to Foxpro, Perl and so on. Of these, Perl is a very

 Introduction 2

good candidate. Perl, short for Practical Extraction and Report Language, was
created by Larry Wall in the mid-1980s for string manipulation and text pro-
cessing purposes. It has the following advantages.
 Perl is free and easy to obtain; it can be downloaded from many websites all
over the world. It’s also easy to install; after downloading, it’s fully functional
with only a few mouse clicks.
 Perl is trans-platform, that is, it can be used under nearly all the major
computer operating systems, such as Macintosh, VMS, OS/2, MS/DOS, Unix,
Linux, Windows and so on. Programs written in Perl can be run under all of the
above systems with practically no change.
 Perl is very versatile and powerful. Perl programs for language processing
purposes are usually short, hence are easy to write and quick to run. One of the
most useful functions of Perl is its powerful regular expressions, which greatly
simplify complicated pattern matching in large texts or mega-corpora. In addition
to string manipulation and text processing, Perl is also very good for number
crunching, that is, it can be used for math operations with efficiency.
 Everything has two sides. Despite Perl’s so many advantages, it has one
downside. Perl programs written by other people are not easy to read. However,
this won’t be of much trouble to the reader of this book since many of the
programs have notes or explanations to them.
 The following is a Perl program for extracting words with 4 or more
consecutive vowels from a 95,132-word wordlist of a 10,000,000-word sample
from the BNC (the British National Corpus) and storing the result to a file called
vcluster.txt.

open(F,"bncwordlist.txt");
open(W,">vcluster.txt");
while($word=<F>){
print (W $word) if($word=~m/[aeiou]{4,}.*/);
}

This program has only five lines but can get all the target words in a file in a
fraction of a second. If it were written in other languages, it would be much
longer.

1.2 Characteristics of this book and its intended readers

This book is mainly on Perl programming for quantitative linguistics; other
applications, such as CGI (Common Gateway Interface) programming for hand-
ling internet web pages, graphics etc, are not covered in this book. But this book
is a good stepping stone to learning these functions with other Perl books that
introduce these functions. The programs in the book were all written by the
authors and computer-tested, and the majority of them are immediately useful for

Introduction 3

serious research, after changing only the input and output file names and their
path. This book can be used as a course book that takes roughly 36-lab hours to
complete; it can also be used for self-study. The intended readership is broad-
spectrum: students, teachers, researchers and other people related to or interested
in language studies, natural language processing, literature, language teaching,
information retrieval and so on; no previous computer programming experience
is required for this book.

The learner of this book is not expected to become a professional pro-
grammer who can write large commercial software packages immediately after
learning Perl using this book. But those who read this book carefully from cover
to cover and do all the exercises in it will be able to use Perl as a handy tool in
their everyday routine work or research, so that they won’t often hassle their
computer programmer friend for help, in the worse case calling him or her in the
middle of the night for a little program when a brilliant research idea suddenly
pops up but can’t be tested with just a wad of paper, an eraser and a pencil. Take
a student in literature as an example, if he or she’s doing a term project writing a
paper on word length distribution of Great Expectations by Dickens, with a very
short Perl script, data can be collected in a fraction of a second and the remaining
task is writing up on these data.
 There are many Perl communities on the Internet, one of the well-known is
CPAN (http://www.cpan.org), where one can ask for help when problems arise
concerning Perl and no solutions are offered in the book, or where we can
download Perl programs or modules. For detailed documentation on Perl, go to
http://www.perldoc.com. Perl can process any language in the world; however, in
this book, Perl is used mainly to deal with English, occasionally Chinese. With
some changes, the programs in the book can also be adapted to process other
languages.

1.3 Downloading and installation

The Perl used in this book is Perl 5.10. It can be downloaded from the following
website:

http://www.activestate.com/activeperl

For the Windows operating system, select Windows (X86); for other systems,
select Other Systems and Versions. Click Windows (X86) to start downloading
and select a drive and folder on your computer for the downloaded file. After the
downloading completes, go to the drive and folder where the downloaded file is
stored (the downloaded file is ActivePerl-5.10) and double click it. The setup
starts. It goes through the following seven steps:
(1) Start the Wizard.

 Introduction 4

(2) Accept the terms in the License Agreement.

(3) Select drive and folder (we suggest putting Perl in D:\Perl. Click Browse for
drive and folder selection).

Introduction 5

(4) Choose Setup Options.

(5) Start the custom installation.

(6) Install Perl.

 Introduction 6

(7) Finish installation.

To check whether Perl has been successfully installed, run cmd.exe to get to the
MS/DOS environment. cmd.exe is located in C:\WINDOWS\system32. Once in
the directory, point the mouse to the file and then right-click the mouse, a pop-up
menu appears. Select create shortcut and then press the left button and pull the
newly created shortcut icon to desktop. Double click the cmd.exe shortcut icon to
get to the MS/DOS environment, as shown below:

Introduction 7

Enter Perl –v at the cursor and press Enter, the following should appear:

This means Perl has been successfully installed in your computer and is ready to
function.

1.4 Program editor

Perl programs can be written with any text editor. We recommend Windows
Wordpad or Notepad since they are attached to Windows and are easy to handle.
Whatever text editor is used, a Perl program must be saved as text only, with pl
as the file extension. From now on we assume Wordpad is used as the Perl
program editor. Create a short cut for it and drag it to Windows desktop. Start it
and type the following:

 Introduction 8

print "This is the first Perl program. ";

Save it as firstprog.pl in d:\perl. To run a Perl program, start cmd.exe, go to the
directory where the program is stored and enter Perl followed by the program
name. Now type the following at the command line after cmd.exe is started, ↵
means press Enter:

d: ↵
cd \perl ↵
perl firstprog.pl ↵

The result is shown below:

1.5 Conventions used in this book

In explaining Perl commands and functions, this book uses the following con-
ventions:
 (1) The commands and functions are written in bold except the brackets. The
user-specified components of a command or a function are written in plain italics.
For example, in the function open(filehandle,"filename"), which is for opening a
text file, filehandle and filename are specified by the user. filehandle can be any
of the 26 English letters or a cluster of such letters, while filename can be any
text files to be processed. If we name filehandle W and the text to be processed is
aventure.txt, this function is written as open(W, “adventure.txt”).
 (2) For ease of explanation, statement numbers are added to programs that
have more than four statements as shown below:

1. open(F,"bncwordlist.txt");
2. open(W,">vcluster.txt");
3. while($word=<F>){
4. print (W $word) if($word=~m/[aeiou]{4,}.*/);
5. }

Introduction 9

When writing programs, which are also called scripts, don’t use these numbers,
or the program won’t run. Perl does not allow numbers put before a statement.
 (3) Commands to be entered at the DOS command line are in italics; the
symbol ↵ means press Enter.
 (4) The optional part of a Perl command or function is enclosed between a
pair of bold square brackets [and]. For example, the if program control structure
has the following form:

 if(condition){
 statements to be carried out if condition is true.
 [}else{
 statements to be carried out if condition is not true.
]
 }

The elements between the bold square brackets are optional.
 Perl provides the character # that makes the computer ignore whatever fol-
lows it. It can be used to put notes within a program or make a statement inactive.
 All the programs, model answers to the exercises and data used in this book
are in the CD of this book, which has the following structure:

The contents of the folders are as follows:

practice: for holding programs and data created by the reader during practice,

currently empty.
progs: containing all the Perl programs in this book, including the model pro-
 grams for exercises at the end of each chapter.
texts: containing Lewis Carroll’s Alice’s Adventures in Wonderland

(adventure.txt), Through the Looking-glass (lookingglass.txt), 20 text
chunks from adventure.txt (alice1.txt to alice20.txt), a short passage in
Chinese (chinese.txt), and other text files (including wordlists of BNC
samples) etc.

Put the entire perllesson folder to a drive on your computer, say, d and make
d:\perllesson\practice your default folder, from where your run your Perl
programs and store the results. Copy all the files in the texts folder to the practice

 Introduction 10

folder. Each time your start a Perl session, type on the DOS command line the
following:

d: ↵
cd perllesson\practice ↵

To run a Perl program here, type perl followed by the program name, with the
file extension pl, and the program will start to run.

2 Perl variables and operators

2.1 Perl variables

A variable is a temporary storage that stores whatever it is given. There are three
types of variables in Perl:
 scalar variables,

array variables,
hash variables.

The latter two are simply called arrays and hashes. In this chapter we’ll focus on
scalar variables, which are referred to just as variables. The name of a variable
can be a single or a cluster of alphanumeric characters and the underscore char-
acter _, with the symbol $ placed at the initial position. Arabic numerals can be
used with these characters in variable names as long as they are not placed
immediately after $.
 The following are valid variable names: $v, $c_34, $counter, $word, $line_1,
$word_list, $text_b, $get_sent_length, etc.
 Punctuation marks and characters such as *, -, +, =, (,), [,], {, }, %, @, &, ^,
~, \, /, |, >, <, %, #, etc, and Arabic numerals used alone or placed immediately
after $, are not allowed in variable names. The following are invalid variable
names: $1, $284, $6v2, $@, $*w, $b-44&text, $get- word-length, etc.

Perl variables are case sensitive; $word is not the same as $Word or $WORD.
The maximum length of a variable name is 255 characters. However, in practical
programming, nobody would use such a long variable. Generally, when writing a
program, we should keep variable names as short as possible, but they should be
suggestive. For example, if a variable stores word frequencies, names such as
$word_freq, $word_frequency or $wordfrequency etc are better than $a, $bb, $wf
and so on.

2.2 Value assignment to variables

Perl variables can be assigned any string or numeric values with the assignment
operator =. String values should be enclosed either between a pair of single
quotes or double quotes, but this is not necessary for numeric values. A complete
Perl statement must end with a semicolon. To display the result of a Perl state-
ment on the screen, use the Perl function print. Now start Windows Wordpad or
any another text editor and enter the following:

$words = "This is an example of value assignment.";
print $words;
$number=22.34;
print $number;

Perl variables and operators 12

Save this short script as test.pl and run it by typing the following on the MS DOS
command line:

perl test.pl ↵

The following is displayed on the screen:
 This is an example of value assignment. 22.34

From now on, demonstration Perl scripts like the above one are assumed to be
saved as test.pl in d:\perllesson\practice and then run by typing perl test.pl on the
DOS command line; the results of these statements are given where necessary
right below these statements in italics. If you wish to keep these demonstration
scripts, give them different names so that they won’t be overwritten.
 To put the two results of the above script on separate lines, Perl’s line break-
ing character \n should be used; however, \n can function only within a pair of
double quotes. Now modify test.pl as follows:

$words = "This is an example of value assignment.";
print "$words\n";
$number=22.34;
print "$number\n";
This is an example of value assignment.
22.34

This time the two results are placed in two separate lines.
 The following is allowed in Perl:

$number1=$number2=$number3=5;
print "$number1\n";
$word1=$word2=$word3="Perl";
print "$word1\n";
5
Perl

To assign to a variable strings that have quotation marks in them, the follow-
ing methods are used.
a. use of the escape character \:

$words="\"Perl is very useful.\" She said.";
print $words;

 "Perl is very useful." She said.

b. use of qq(string):

Perl variables and operators 13

$words=qq("Perl is very useful. " She said.);
print $words;

 "Perl is very useful." She said.

c. use of q(string):

$words=q("Perl is very useful." She said.);
print $words;
"Perl is very useful." She said.

The difference between b and c is that qq stands for double quote and q a single
one. Remember the line breaking character \n that can function only within a pair
of double quotes? Now do the following:

a.

$words=qq("Perl is very useful."\nShe said.);
print $words;
"Perl is very useful."
She said.

b.
$words=q("Perl is very useful." \nShe said.);
print $words;
"Perl is very useful."\nShe said.

2.3 Perl numeric operators and functions

2.3.1 Math operators

The following are math operators used in Perl.

 + Addition.
 ++ Add one.
 - Subtraction.
 -- Subtract one.
 * Multiplication.
 / Division.
 ** Exponentiation.
 % Modulo.

Now do the following:

$a=4*5;

Perl variables and operators 14

print $a;
20

$a =(34+45-20)*3;
print $a;
177

$a=4457/226;
print $a;
19.7212389380531

$a=32**(1/4);
print $a;
2.37848423000544

$a=(2**3)**2;
print $a;
64

Unlike some other computer languages, Perl does a series of exponential comput-
ation from the right:

$a=2**3**2
print $a;
512

$a= 13%10;
print $a;
3

 $a=6;

$a++;
print $a;
7

$a=10;
$a--;
print $a;
9

$a=20;
$a=$a+2;
print $a;

Perl variables and operators 15

22

$a=20;
$a=$a-2;
print $a;
18

$a=20;
$a=$a*2;
print $a;
40

$a=20;
$a=$a/2;
print $a;
10

Look at the following:

$a=4;
$a+=20;
print $a;
24

In the above, $a+=20 is the same as $a=$a+20. Now do the following:

$a=4;
$a-=20;
print $a;
-16

$a=4;
$a*=20;
print $a;
80

$a=4;
$a/=20;
print $a;
0.2

$a=4;
$a**=20;

Perl variables and operators 16

print $a;
1099511627776

For extremely large integers, Perl automatically converts them into floating point
values:

$bignumber=4294967295**4;
print $bignumber;
3.40282366604026e+038

In case the actual integer is needed, however large it is, the Math::BigInt
package in Perl can be invoked by putting use bignum in the program:

use bignum;
$bignumber=4294967295**4;
print $bignumber;
340282366604025813516997721482669850625

2.3.2 Math functions

Perl has the following math functions:

 sqrt(n) The square root of n.
 int(n) Convert n to integer.
 log(n) The natural logarithm n (to the base e).
 exp(n) Raising e to the nth power.
 rand(n) Producing a random number between 0 and n.
 abs(n) Absolute value of n.

Now compute the square root of 334:

$a=sqrt(334);
print $a;
18.2756668824971

To get to the kth root of n, use the following:

$n**(1/k)

For example, 5 32 can be expressed in Perl as 32**(1/5).

$a= 32**(1/5);

Perl variables and operators 17

print $a;
2

$a=int(3.665);
print $a;
3

$a=-445.6;
print abs($a);
445.6

$a=log(2.71828);
print $a;
0.999999327347282

To get the logarithm of n to the base 2 and base 10, use the following:

log(n)/log(2) the logarithm to the base 2.
log(n)/log(10) the logarithm to the base 10.

For example:

$a= log(4)/log(2);
print $a;
2

$a= log(100)/log(10);
print $a;
2

$a=exp(2);
print $a;
7.38905609893065

$a=rand(10);
print $a;
0.857646487375

To reduce decimal places, we can use the following:

 sprintf "%.nf", n

$a=sprintf”%.4f”,3.1415926;

Perl variables and operators 18

print $a;
3.1416

$a=sprintf"%.0f",3.1415926;
print $a;
3

atan2(n,x) Returning in radians the arc tangent of n/x in the range –π to π.
cos(n) returning in radians the cosine of n.
sin(n) returning in radians the sine of n.

Now do the following:

$a=atan2(1,1);
print $a;
0.785398163397448

$a=cos(3.1415926);
print $a;
-0.999999999999999

$a=sin(30);
print $a;
-0.988031624092862

More trigonometry functions are provided in Perl’s Math::Trig package. For
example, the following gets the tangent of 1 by invoking the Math::Trig package:

use Math::Trig;
print tan(1);
1.5574077246549

Next, we’ll use some of the math operators and functions to write a program to
solve the following problem (keep 6 decimal places):

23867log)3112(3321
9221

78.4453412.23 2
4 35 ÷⎥

⎦

⎤
⎢
⎣

⎡
+−÷×

The program is as follows:

 math1.pl

$math_result=sprintf"%.6f",(((23.412*(4453.78/9221))**(1/5))/

Perl variables and operators 19

(33210000-(12+31)**3)**(1/4))/(log(23867)/log(2));
print $math_result;
0.001472

This program has three lines but only two statements. Since the first statement is
too long, we can break it into two lines and Perl permits this way of writing
programs since a statement ends with a semicolon.

2.3.3 Numeric comparison operators

The following are operators used for numeric comparison:

== Equal.
!= Not equal.
< Less than.
> Greater than.
<= Less than or equal to.
>= Greater than or equal to.

Before practicing using these operators, let’s learn the if structure control in Perl.
It’s in the following form (Note that the part between the pair of bold square
brackets is optional):

if (condition){
statements to be carried out if condition is true.
[}else{
Statements to be carried out if condition is not true.
]
}

There is another way to use the if structure where more than two conditions exist:

if (condition1){
statements to be carried out if condition1 is true.
[}elsif(condition2){
Statements to be carried out if condition2 is true.
}elsif(condition3){
Statements to be carried out if condition3 is true.
}elsif(condition4){
Statements to be carried out if condition4 is true.
}elsif(condition5){
Statements to be carried out if condition5 is true.

Perl variables and operators 20

… …
}else{
Statements to be carried out if all the above conditions are not true.
]
}

Now do the following:

$a=4;
$b=6;
if($a>$b){
print "$a is greater than $b!\n";
}else{
print "$a is not greater than $b.\n";
}
4 is not greater than 6.

$a=14;
$b=14;
if($a!=$b){
print "$a is not eqal to $b!\n";
}else{
print "$a is equal to $b.\n";
}
14 is equal to 14.

$a=2239;
$b=2239;
if($a==$b){
print "$a is eqal to $b.\n";
}else{
print "$a is no equal to $b!\n";
}
2239 is equal to 2239.

Pay attention to the double equal signs used in if(condition). Here if only a single
equal sign is used, error may result. Do the following:

$a=2239;
$b=44;
if($a=$b){
print "2239 is equal to 44.\n";
}else{

Perl variables and operators 21

print "2239 is not equal to 44!\n";
}
2239 is equal to 44.

The result is wrong; this was caused by the use of a single equal sign in
if(condition). This is because in Perl, as well as in several other programming
languages such as C, C++, Java etc, one uses = as a symbol for assignment, not
as an equal sign.

The following example shows the use of the if…elsif structure.

$a=120;
$b=150;
$c=160;
if ($a>$b){
print ("$a is larger than $b.\n");
}elsif($b>$c){
print ("$b is larger than $c.\n");
}else{
print ("Neither $a nor $b is larger than $c.\n");
}
Neither 120 nor 150 is larger than 160.

If(condition) has a simplified form as shown below :

statement to be carried out if(condition)

$a=34;
$b=50;
print "$a is less than $b.\n" if($a<$b);
34 is less than 50.

2.4 String operators and string comparison operators

2.4.1 String operators

Perl has the following string operators:

x Repetition.
. Concatenation.
.. Range operator

Now do the following:

Perl variables and operators 22

$letter=“t” x 10;
print $letter;
tttttttttt
$string1="This is";
$space=" ";
$string2="string concatenation.";
$string3=$string1.$space.$string2;
print $string3;
This is string concatenation.

We can also use .= for string concatenation:

$string1="conca";
$string2="tenation";
$string1.=$string2;
print $string1;
concatenation

Here $string1.=$string2 is the same as $string1=$string1.$string2.

In the following, the range operator assigns the small case alphabet to
@letters (@letters is an array, which will be dealt with in Chapter 6):

@letters=a..z;
print @letters;
abcdefghijklmnopqstuvwxyz
@digits=3..20;
print @digits;
34567891011121214151617181920

2.4.2 String comparison operators

The following are operators for string comparison:

lt Less than.
gt Greater than.
eq Equal to.
le Less than or equal to.
ge Greater than or equal to.
ne Not equal to.

$letter1="a";
$letter2="c";

Perl variables and operators 23

if ($letter1 gt $letter2){
print "$letter1 is greater than $letter2!\n";
}else{
print "$letter1 is not greater than $letter2.\n";
}
a is not greater than c.

$word1="Perl";
$word2="perl";
if ($word1 ne $word){
print "$word1 is not equal to $word2.\n";
}else{
print "$word1 is equal to $word2.\n";
}
Perl is not equal to perl.

Next, we’ll write a short program to simulate coin casting. If a fair coin is thrown
up into the air, the possibility of getting heads or tails is 0.5.

castcoin.pl
1. $message="Now let's flip a coin. H: Heads, T: Tails.\n";
2. print $message;
3. $randomnumber=rand(1);
4. if($randomnumber<0.51){
5. $cast="T";
6. }else{
7. $cast="H";
8. }
9. print "Your cast is: $cast.";

In statement 3 rand(1) generates a random number between 0 and 1, which is
assigned to $randomnumber. In statements 4—7, if $randomnumber is less than
0.51, it’s tails, otherwise it’s heads. Statement 9 prints out the results.

2.5 The logical operator

The following are the logical operators:

and Expressing the AND relationship; some times && is used.
or Expressing the OR relationship; some times || is used.
not Expressing the NOT relationship; some times ! is used.

Perl variables and operators 24

Now do the following:

$a=12;
$b=10;
$d=4;
$c=6;
if($c<$a and $b and $c >$d){
print "$c is less than $a and $b but greater than $d.\n";
}else{
print "$c is greater than $a and $b but less than $d.\n";
}
6 is less than 12 and 10 but greater than 4.

$a=12;
$b=10;
$d=4;
$c=6;
if($b<$a or $c <$d){
print "$b is less than $a.\n";
}else{
print "$b is greater than $a.\n";
}
10 is less than 12.

$a=12;
$b=10;
if(not $a>$b){
print "$a is not greater than $b.\n";
}else{
print "$a is greater than $b.\n";
}
12 is greater than 10.

In all the above, AND, OR and NOT can all be respectively replaced with &&, ||
and !.

Exercises

1. Assign the following two sentences to two variables respectively, then
concatenate the two variables and output them on the screen.

a. “I’m learning Perl.”
b. Sally said to her friend.

Perl variables and operators 25

2. The following was proposed by Altmann:

CN = bL-a

where CN is the number of compounds, L the word length measured in syllables,
and b, a are parameters. If a = 2.3212, b = 30.2693, check the fit of the above
relationship to the following empirical data:

Word syllable length Observed mean number of compounds
 1 30.29
 2 5.86
 3 2.01

3. Tuldava proposes that the relationship between vocabulary size V and the
length of text is βα)(ln NNeV −= ; if α = 0.009152, β = 2.3057, N = 1000000,
compute V.

4. Popescu, Mačutek and Altmann explored the possibility of using the arc length
of rank-frequency distributions in text characterization and language typology.
The arc length of rank-frequency distribution L is expressed as follows:

2/1
1

1

2 }1)]1()({[++−= ∑
−

=

V

r
rfrfL ,

where V = vocabulary size of a text; r = rank of word frequency, with the highest
frequency being r = 1; f(r) = word frequency at rank r. Write a program called
arclength.prg to compute the arc length of the following imagined word rank-
frequencies (V = 3):

 Rank Frequency
 1 1635
 2 872
 3 825
 4 730

5. Compute the following:

)812(43)3311102(
2578
340056.5775422483.100938 −−×+÷−× .

3 Input and output

In the preceding chapter, we learned Perl variables and operators and practiced
using them in test programs. The data used for these programs were all contained
within the practice programs, and the results were displayed only on the screen.
Apart from that, data or texts to be processed can also be inputted outside the
program. Very short data can be entered on the DOS command line and can be
either displayed on the screen or stored in a file that can be accessed again. For
large data sources such as the entire 100-million-word BNC, Perl can also use
external files as the data source and store results in a re-accessible file. In this
chapter we’ll look at how these are achieved.

3.1 Input at the command line

3.1.1 The use of @ARGV

Perl has a special in-built array @ARGV that keeps records of whatever is en-
tered at the DOS command line, except for the command to run a program, such
as perl test.pl. @ARGV must be in upper case. An array can be thought of as a
table that has individual cells numbered starting from 0. That is, the first cell is
numbered by convention 0, the second 1, the third 2 etc. Values are stored in
these numbered cells and can be accessed by referring to the number of the cells.
In Perl arrays, these cells are called array elements. An array element is ex-
pressed as follows:

$arrayname[element number]

For example, the first element of @ARGV is expressed as $ARGV[0]. Now
enter the following in Wordpad or whatever text editor you use:

print("$ARGV[0]\n");
print("$ARGV[1]\n");
print("$ARGV[2]\n");
print("$ARGV[3]\n");
print("$ARGV[4]\n");
print("$ARGV[5]\n");
print("$ARGV[6]\n");

Again save it as test.pl and enter the following on the DOS command line:

perl test.pl This is input at the command line. ↵
This

Input and output 27

is
input
at
the
command
line.

Next we’ll compute (10*2)/4 using the command line input:

$result=$ARGV[0]*$ARGV[1]/$ARGV[2];
print $result;
perl test.pl 10 2 4 ↵
5

Note that $ARGV[0]*$ARGV[1]/$ARGV[2] must be assigned to a variable, or
error will result.

3.1.2 The use of STDIN

STDIN is used to capture the keyboard input. It’s often used for interactive
programming and must be enclosed between a pair of pointed brackets < and >.
Look at the following program:

interactive.pl
1. print("Please enter a number:");
2. $number1=<STDIN>;
3. chomp $number1;
4. print("The number is $number1. Please enter another number:\n");
5. $number2=<STDIN>;
6. chomp $number2;
7. print("The second number is $number2. The result of $number1 +

$number2 is:\n");
8. print $number1+$number2;

The program asks for two numbers, adds them together and outputs the result.
Note the use of the Perl character function chomp in statements 3 and 6. It’s a
function for removing carriage returns. When a number is given and Enter is
pressed, STDIN records the number as well as the Enter key. Try putting # be-
fore these two statements and see what happens.

Input and output 28

3.1.3 Command line file input

Now we’ll look at how to specify a file as the source of input at the command
line. Before doing that, we’ll first learn the open file function and the while…
program control structure.

open(FILEHANDLE, $ARGV[0]) [or die (“expression\n”)] This function
is put inside a program, usually at the beginning. FILEHANDLE is given by the
user; it represents the name of the input file. FILEHANDLE can be either a single
letter or several letters. The file given at the command line as the first argument
is captured by $ARGV[0], which is then processed by the program. The contents
within the bold square brackets are optional, telling the program to stop in case
the file can’t be opened. die is a Perl command that stops a program from where
it’s issued. expression can be a message such as file can’t be opened etc.

At the end of a program, files opened must be closed. The function to do this

is as follows:

close(FILEHANDLE) This closes the file represented by FILEHANDLE.

The while program control structure tells the computer to execute the

statements between the pair of curly brackets as long as condition holds true:

while(condition){
statements to be carried out while condition holds.
}

The following is a short program taking a file as input specified at the com-

mand line and output it line by line to the screen.

printpoem1.pl
1. open(F,$ARGV[0]) or die("File does not exist!\n");
2. while($line=<F>){
3. print($line);
4. }
5. close(F);

Then type the following at the DOS command line (assuming you are in
d:\perllesson\practice):

perl printpoem1.pl poem.txt ↵

The program starts to output the poem line by line to the screen. In the file open
function, the file handle is F. To input the file, the file handle must be put be-

Input and output 29

tween two pointed brackets, which are called the file input operator; $ARGV[0]
contains the file path and name. The while control structure loops between the
two curly brackets; as long as there are lines in the input file, input one and out-
put it to the screen. It should be emphasized that in Perl assignments have a truth
value which depends on the value assigned, and that truth values are identified
with numerical values and that, thus, in case of an unsuccessful assignment the
truth value FALSE is obtained.

The result produced by printpoem1.pl is outputted to the screen and is not
reusable. To store the result to a file that can be accessed any time we wish, use
the following functions:

 open(FILEHANDLE,”>$ARGV[1]”) [or die (“expression\n”)];
 print(FILEHANDLE variable)

The first function opens a file for storing the output. The file name is given at the
DOS command line and captured by $ARGV[1] if this filename is entered as the
second argument and . Note the double quotes and the single right pointed
bracket; If two right pointed brackets >> are used here, each time the program is
run, the result is added to the old result. The second function prints the result in
the file. Note there is no comma after the file handle.

printpoem2.pl
1. open(F,$ARGV[0]) or die("File does not exist!\n");
2. open(W,">$ARGV[1]") or die("File can’t be opened.\n");
3. while($line=<F>){
4. print(W $line);
5. }
6. close(F);
7. close(W);

Now type the following on the DOS command line:

 perl printpoem2.pl poem.txt result.txt ↵

The result is stored in result.txt in d:\perllesson\practice.

3.2 Inputting files inside a program

Input and output files can also be specified within a program. This is very easy to
do; instead of $ARGV[0] and $ARGV[1], we just use the names of the input file
and output file as the following:

open(FILEHANDLE,”inputfilename”) [or die (“expression\n”)];

Input and output 30

open(FILEHANDLE,”>outputfilename”) [or die (“expression\n”)];

We can also specify the drive and folder of the file to be opened. Look at the
following example.

printpoem3.pl
1. open(F,”d:\\perllesson\\texts\\poem.txt”) or die("File does not exist!\n");
2. open(W,">result.txt") or die("File can’t be opened.\n");
3. while($line=<F>){
4. print(W $line);
5. }
6. close(F);
7. close(W);

Note that in statements 1—2 \\ is used. This is because \ is an escape character in
Perl. The first \ is used to tell Perl that the following \ is a path separator, not an
escape character. If two single quotes are used to enclose the file path and name,
only one \ is necessary as shown below:

open(F,’d:\perllesson\texts\poem.txt’) or die("File does not exist!\n");

Now type on the DOS command line the following:

perl printpoem3.pl ↵

The result is stored in d:\perllesson\practice\result.txt. Statement 1 is only for
practice and is not necessary here since we have copied every file from texts to
practice. So statement 1 can be simplified as follows:

open(F,”poem.txt”) or die("File does not exist!\n")

Instead of reading the poem line by line, we can print out the entire file all at
once using the following read file function:

read(FILEHANDLE,variable,filelength)

FILEHANDLE here must be the one specified in the open file function; variable
is given by the user; it stores the contents of the entire file. filelength is length of
the file in terms of number of bytes. A safe margin should be given to ensure that
the file is not truncated. If a file is about 200000 bytes in length, 210000 would
be safe for filelength.

printpoem4.pl
1. open(F,"poem.txt") or die("File does not exist!\n");

Input and output 31

2. read(F,$text,1500);
3. open(W,">result.txt") or die("File can’t be opened.\n");
4. print(W $text);
5. close(F);
6. close(W);

Because of the use of the read file function, the while loop is not used. Statement
2 puts the contents of the input file to the variable $text; it can be any other name
as long as it’s suggestive. The length of the poem is only 1000 bytes, so 1500 is
quite safe.

In Chapter 2 we wrote math1.pl to solve a complicated math problem as
shown below:

23867log)3112(3321
9221

78.4453412.23 2
4 35 ÷⎥

⎦

⎤
⎢
⎣

⎡
+−÷×

Now we’ll modify math1.pl and store the result in a file instead of displaying it
on the screen.

math2.pl
open(W,”>mathresult.txt”) or die (“Can’t create file.\n”);
$math_result=sprintf"%.6f",(((23.412*(4453.78/9221))**(1/5))/(33210000-
(12+31)**3)**(1/4))/(log(23867)/log(2));
print (W $math_result);
close(W);

The result is stored in mathresult.txt and can be opened and closed any time it’s
needed.

3.3 Some string manipulation functions

There are several built-in string manipulation functions in Perl. We’ll look at
some of them in this section.

lc variable This converts the contents stored in variable into lower cases.

$words=”THIS IS A DEMONSTRATION OF THE USE OF LC.”;
$words= lc $words;
print $words;
this is a demonstration of the use of lc.

uc variable This function converts variable into upper case.

Input and output 32

$words=”this is a demonstration of the use of uc.”;
$words= uc $words;
print $words;
THIS IS A DEMONSTRATION OF THE USE OF UC.

ucfirst variable This function puts the first letter of the first word in

variable into upper case and the rest into lower case.

$words=”this is a demonstration of the use of ucfirst.”;
$words= ucfirst $words;
print $words;
This is a demonstration of the use of ucfirst.

However, if all the words in $variable are in upper case, this function has no
effects on it.

length(variable) This function measures the length of variable in number of
characters.

$words="this is a demonstration of the use of length.";
$words_length=length($words);
print $words_length;
45

Note that the result is 45 instead of 37; this is because the white space is also a
character, represented by the decimal ASCII character code 32. The following is
the ASCII character code table:

Input and output 33

The ASCII character codes 0—31 are control characters and unprintable. For
example 7 is the bell, 9 stands for the tab key, 13 carriage return. The English
alphabet is represented by the ASCII character codes 65—90 and 97—122. The
expanded ASCII character codes now have 256 characters.
 Next, we’ll look at two Perl functions for the ASCII character codes.

 chr asciicodenumber This function converts ASCII codes into characters.

print chr 33;
!

print chr 56;
8

print chr 72;
H

print chr 104;
h

There is asciicodes.txt in practice containing the 256 ASCII code numbers. The
following program converts them into characters. Note some are not printable,
and a bell sound can be heard when the ASCII code number 7 is processed. Some
computers are unable to print out ASCII character codes higher than 125.

asciicharacter.pl
1. open(F,"asciicodes.txt") or die ("File can't be opened.\n");
2. while ($asciicodes=<F>){
3. print chr $asciicodes;
4. print "\n";
5. }
6. close(F);

 ord character This function converts a character into its corresponding
ASCII code number. For character clusters, it only gives the ASCII code of the
first character in the cluster.

 There is a file called characters.txt containing 92 characters. The following
short program converts these characters into their corresponding ASCII code
values.

asciicodes.pl
1. open(F,"characters.txt") or die ("File can't be opened.\n");
2. while ($character=<F>){

Input and output 34

3. print ord $character;
4. print "\n";
5. }
6. close(F);

getc filehandle This function cuts one character off filehandle. The

following short program cuts characters one at a time from adventure.txt and
turns them into their corresponding ASCII codes:

getc.pl
1. open(F,"adventure.txt") or die("Can't open file.\n");
2. open(W,">result.txt") or die("Can't create file.\n");
3. while($char=ord getc F){
4. print W "$char ";
5. }
6. close(F);
7. close(W);

Note the space after $char in statement 4. Part of the result is shown below:

32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 65 76 73
67 69 39 83 32 65 68 86 69 78 84 85 82 69 83 32 73 78 32
87 79 78 68 69 82 76 65 78 68 32 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 10 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
32 67 72 65 80 84 69 82 32 73 10 32 32 32 32 32 32 32 32
32 32 32 32 32 32 32 32 32 32 32 32 32 68 111 119 110 32
116 104 101 32 82 97 98 98 105 116 45 72 111 108 101 10
32

3.4 Applications

Now we’ll write programs using some of the functions we’ve learned. First we’ll
write a short program that removes all the line breaks in bncwordlst.txt and puts
all the words in a long line instead of in a one-word column.

(1)

removebreak.pl
1. open(F,"bncwordlist.txt")or die("File can't be opened.\n");
2. open(W,">result.txt")or die("File can't be created.\n");
3. while ($word=<F>){
4. chomp $word;

Input and output 35

5. $line.=lc $word.", ";
6. }
7. print W $line;
8. close(F);
9. close(W);

In this program, statements 1—2 do file input and output. Statements 3—6 create
a loop, in which the word is inputted and processed one by one, until all the
words in the wordlist are exhausted. Now $line stores all the words in a long line,
with the words separated with a comma and a space. Statement 7 prints contents
of $line to result.txt. The most important statement of this program is statement 4,
which removes the line break after each word using the chomp function.
Statement 5 puts the words in a long line one by one, separated by a comma and
a space. Note the use of .=.
 The following program converts all the words in bncwordlist.txt into upper
case using the uc function.

(2)

uppercase.pl
1. open(F,"bncwordlist.txt")or die("File can't be opened\n");
2. open(W,">result.txt")or die("File can’t be created.\n");
3. read(F,$text,9000000);
4. $convert=uc $text;
5. print(W "$convert");
6. close(F);
7. close(W);

Statement 3 reads the contents of bncwordlist.txt into the file. The actual file
length of bncwordlist.txt is 889000 bytes, so 9000000 is long enough to get the
entire file.

Next, we’ll write a program to centre-justify all the lines in Keats’ poem To
Autumn in poem.txt. The poem is left-justified, as shown below:

To Autumn
Season of mists and mellow fruitfulness
Close bosom-friend of the maturing sun
Conspiring with him how to load and bless
With fruit the vines that round the thatch-eaves run;
To bend with apples the mosss'd cottage-trees,
And fill all fruit with ripeness to the core;
To swell the gourd, and plump the hazel shells
With a sweet kernel; to set budding more
And still more, later flowers for the bees,
Until they think warm days will never cease,
For summer has o'er-brimm'd their clammy cells.

Input and output 36

--John Keats—
Assuming the width of a common page is 80 characters excluding the page
margins, then the vertical centre line of such a page is 40 characters from the left
edge and 40 from the right. Suppose a line of the poem has 36 characters
(including spaces), to centre-justify this line, the first half of the line should be
placed to the left of the vertical centre line, with 22 white spaces from the left
edge of the page to the start of the first half. Bearing the above in mind, we can
now write the program.

(3)

cjustify.pl
1. open(F,"poem.txt")or die("File can't be opened.\n");
2. open(W, ">result.txt")or die("File can’t be created.\n");
3. while ($line=<F>){
4. $linelength=length($line);
5. $leftspaces=" "x(40-$linelength/2);
6. $line=$leftspaces.$line;
7. print(W $line);
8. }
9. close(F);
10. close(W);

Statement 4 measures the length of each line. Statement 5 places the first half of
a line to the left of the vertical centre line of the page, with 40−$linelength/2
white spaces placed between the left edge of the page and the beginning of the
poem line. A white space can be produced by a pair of double quotes with a
space in between, or use the chr function. The result is as follows:
 To Autumn
 Season of mists and mellow fruitfulness
 Close bosom-friend of the maturing sun
 Conspiring with him how to load and bless
 With fruit the vines that round the thatch-eaves run;
 To bend with apples the mosss'd cottage-trees,
 And fill all fruit with ripeness to the core;
 To swell the gourd, and plump the hazel shells
 With a sweet kernel; to set budding more
 And still more, later flowers for the bees,
 Until they think warm days will never cease,
 For summer has o'er-brimm'd their clammy cells.
 --John Keats--

The next program adds line numbers to the poem. The title of the poem To
Autumn should have no line number, neither should the last line, which is the
name of the author. In addition, all the lines of the poem should start three
characters from the left edge of the page.

Input and output 37

(4)
linenumber.pl
1. open(F,"poem.txt")or die("File can't be opened.\n");
2. open(W, ">result.txt")or die("File can’t be created.\n");
3. while ($line=<F>){
4. $linenumber++;
5. $threespaces=(chr 32)x3;
6. if ($linenumber==1){
7. print (W $threespaces.$line);
8. }elsif(ord $line==45){
9. print(W $threespaces.$line);
10. }else{
11. $width=(chr 32)x(3-length($linenumber-1));
12. $line=($linenumber-1).$width.$line;
13. print(W $line);
14. }
15. }
16. close(F);
17. close(W);

In this program, statements 3—15 form a loop, in which the lines of the poem are
inputted one by one and processed. Statement 4 generates line numbers, and
statement 5 produces three white spaces. The spaces can also be generated by
putting three spaces between a pair of single quotes or double quotes; but it
would be difficult for the reader to tell the exact number of spaces this way.
Statements 6—9 are for the first and last lines, which do not need line numbers
(the last line begins with two hyphens, whose ASCII character code is 45), but
they should be three characters away from the left edge of the page, which is
done by statements 7 and 9. Statements 10—14 are for lines that need line num-
bers. Statement 11 generates spaces. If the length of the line number is 1, two
spaces are produced; if the length is 2, one space is produced. Statement 12 adds
the space or spaces thus produced to the right of the line numbers, followed a line
of poem. Since the first line does not need a line number, the second line should
be given line number 1, the third line number 2 and so on, which is done by
$linenumber-1. The result is as follows.

 To Autumn
1 Season of mists and mellow fruitfulness
2 Close bosom-friend of the maturing sun
3 Conspiring with him how to load and bless
4 With fruit the vines that round the thatch-eaves run;
5 To bend with apples the mosss'd cottage-trees,
6 And fill all fruit with ripeness to the core;
7 To swell the gourd, and plump the hazel shells
8 With a sweet kernel; to set budding more

Input and output 38

9 And still more, later flowers for the bees,
10 Until they think warm days will never cease,
11 For summer has o'er-brimm'd their clammy cells.
 --John Keats--

 The following program picks out words beginning with a, e, i, o, u in
bncwordlist.txt and stores them in separate files.

(5)

 pickwords.pl
1. open(F,"bncwordlist.txt")or die("File can't be opened.\n");
2. open(A,">aword.txt")or die("File A can't be created.\n");
3. open(E,">eword.txt")or die("File E can't be created.\n");
4. open(I,">iword.txt")or die("File I can't be created.\n");
5. open(O,">oword.txt")or die("File O can't be created.\n");
6. open(U,">uword.txt")or die("File U can't be created.\n");
7. while ($word=<F>){
8. if (ord $word==65){
9. print(A $word);
10. }elsif(ord $word==69){
11. print(E $word);
12. }elsif(ord $word==73){
13. print(I $word);
14. }elsif(ord $word==79){
15. print(O $word);
16. }elsif(ord $word==85){
17. print(U $word);
18. }
19. }
20. close(F);
21. close(A);
22. close(E);
23. close(I);
24. close(O);
25. close(U);

Although this program has 25 statements, it’s mainly simple repetitions of the
open, close functions and print function. Statements 1—6 open bncwordlist.txt
and create five files for storing separately words beginning with A, E, I, O and U.
Statements 7—19 create a loop, in which words are inputted one by one and
selected by statements 8—17 using the ord function. Note the use of the if...elsif
statements, in which the ASCII value of the first letter of every word is checked.
If it’s one of the specified letters, the word is sent to the target file; otherwise the
word is ignored and the next word is inputted and checked.

Input and output 39

 The following is an interactive program that counts the number of words of a
wordlist, the total length of the words and the average length of the words, and
stores the result to another file. The program first asks the reader for the name of
the file to be processed, its path, and where to store the results.

(6)

countword.pl
1. print "This program computes the number of words of the file you

specify,\n";
2. print "and stores the result in another file.\n";
3. print "Now enter the name of file to be processed below:\n";
4. $input=<STDIN>;
5. open(F,$input) or die ("File can't be opened.\n");
6. print "The file to be processed is:\n".uc $input;
7. print "Please enter the name of the result file below:\n";
8. $output=<STDIN>;
9. print "The result will be stored in: \n".uc $output;
10. print "Processing. Please wait...\n";
11. print "Number Length\n";
12. open(W,">$output") or die("File can't be created.\n");
13. while ($word=<F>){
14. chomp $word;
15. $wordnumber++;
16. $wordlength+=length($word);
17. if($wordnumber%10000==0){
18. print "$wordnumber $wordlength\n";
19. }
20. }
21. $average=$wordlength/$wordnumber;
22. print (W "The total number of words is: $wordnumber\n");
23. print (W "The total number of characters in file is: $wordlength\n");
24. print (W "The average word length is: $average");
25. print ("The total number of words is: $wordnumber\n");
26. print ("The total number of characters in file is: $wordlength\n");
27. print ("The average word length is: $average");
28. close(F);
29. close(W);

Statements 1—11 are the interactive part of the program. The names of the input
file and output file are captured by the STDIN function. The main part of the
program are statements 13—20. Statement 15 counts the number of words;
statement 16 adds the length of each of the words; statement 17 displays on the
screen the number of words that have been counted every 10,000 words using the
modulo operator %. Statements 21—24 send the obtained data with messages

Input and output 40

about the data to the output file; statements 25—27 display the results to the
screen.

Exercises

1. Write an interactive program to combine all the lines of poem.txt into one
paragraph.

2. Rewrite cjustify.pl program so that it can do right-justification to the words in
bncwordlist.txt with word numbers added to the left of the words.

3. Write a program so that it can do central-justification to poem.txt, add line
numbers to the left of each of the justified lines except for the first and the last
lines, and compute the average line length (including spaces) of the poem (again
excluding the first and the last lines). Output the result to a new file.

4. Write a program to divide words in bncwordlist.txt into the following groups:

a. words with length less than or equal to 3 and put these words in a file;
b. words with length 4—10 and put these words to different files according

to their lengths;
c. words with length over 10 and put them in a file;
d. compute the total number of the words, the average length of all the

words and the number of words in the different word length groups in a
file.

5. In 3.3 we wrote getc.pl that turned all the characters in adventure.txt into
ASCII codes stored in result.txt. Now write a program to turn all the ASCII
codes back into characters.

4 Regular expressions: basic structure

In natural language processing, language teaching, quantitative linguistics and
other language-related research, pattern matching is a run-of-the-mill task, boring
but necessary, done quite often. The regular expressions provided by Perl are
very efficient for such tasks. In Speech and Language Processing, An Intro-
duction to natural Language Processing, Computational Linguistics, and Speech
Recognition by Zurafsky and Marin, a substantial part of the second chapter is
devoted to Perl’s regular expressions. In this chapter we’ll look at regular ex-
pressions and the application of regular expressions.

4.1 Operators for regular expressions

There is a set of operators used to form Perl regular expressions. They are =~,
m//, s/// and tr///.

4.1.1 =~ and m//

=~ This is the most important regular expression operator; it applies the
regular expression on its right to the string or variable on its left.

m/pattern/ This operator matches pattern within a string or variable; m is
optional.

Look at the following examples:

$phrasea="regular expression";
$phraseb="Regular Expression";
$phrasec="regular expression";
if ($phrasea=~m/$phraseb/){
print "phrasea equals phraseb";
}
if ($phrasea=~m/$phrasec/){
print "phrasea equals phrasec";
}
phrasea equals phrasec

$sentence="We know that the regular expression is very powerful.";
$string="pressio";
if ($sentence=~m/$string/){
print "The string pressio exists in the sentence";

Regular expressions: basic structure 42

}
The string pressio exists in the sentence.

m can be omitted:

$phrasea="regular expression";
$phraseb="Regular Expression";
$phrasec="regular expression";
if ($phrasea=~/$phraseb/){
print "phrasea equals phraseb";
}
if ($phrasea=~/$phrasec/){
print "phrasea equals phrasec";
}
phrasea equals phrasec

4.1.2 s///

The s/// operator is used as a pattern substitution operator; the syntax of its usage
is as follows:

s/pattern/substitution/

$sentence="I like regular expressions.";
$sentence=~s/I like/Everybody likes/;
print $sentence;
Everybody likes regular expressions.

substitution can be a variable:

$sentence="I like regular expressions.";
$change="Everybody likes";
$sentence=~s/I like/$change/;
print $sentence;
Everybody likes regular expressions.

s/pattern/substitution/ uses the following switches.

e This switch carries out Perl functions or math operations in substitution.

$sentence="I like regular expressions.";
$change="Everybody likes";

Regular expressions:basic structure 43

$sentence=~s/I like/uc $change/e;
print $sentence;
EVERYBODY LIKES regular expressions.

$phrase="Several Perl regular expression operators";
$phrase=~s/Several/3*2/e;
print $phrase;
6 Perl regular expression operators

$phrase="The length of the word antidisestablishmentarianism is x.";
$phrase=~s/x/length antidisestablishmentarianism /e;
print $phrase;
The length of the word antidisestablishmentarianism is 28.

g It’s a global switch. With this switch, every instance of pattern is sub-

stituted by substitution in s/pattern/substitution/. This switch can also be used in
m/pattern/ to search for every instance of pattern.

$phrase="The length of antidisestablishmentarianism and the length of
about.";
$phrase=~s/length of/number of letters in/;
print $phrase;
The number of letters in antidisestablishmentarianism and
the length of about.

In the above, only the first instance of length of is replaced with number of letters
in. The following uses the g switch:

$phrase="The length of antidisestablishmentarianism and the length of
about.";
$phrase=~s/length of/number of letters in/g;
print $phrase;
The number of letters in antidisestablishmentarianism and
the number of letters in about.

$sentence="Perl is soooooo powerful";
while($sentence=~m/o/g){
$number++;
print "Found $number O.\n";
}
Found 1 O.
Found 2 O.

Regular expressions: basic structure 44

Found 3 O.
Found 4 O.
Found 5 O.
Found 6 O.

Without the g switch, the program will go into a dead loop.

Perl automatically records the number of substitutions the s/// operator has
made. The following structure gets this number:

$n=($variable=~s/pattern/substitution/g)
$phrase="student of linguistics, teacher of linguistics and researcher of
linguistics.";
$number=($phrase=~s/linguistics/computer science/g);
print $number;
3

i This switch makes pattern matching and substitution case insensitive. It

can also be used in m//.

$phrase="student of Linguistics, teacher of Linguistics and researcher of
Linguistics.";
$phrase=~s/linguistics/computer science/g;
print $phrase;
student of Linguistics, teacher of Linguistics and
researcher of Linguistics

No substitution has been made. Look at the following:

$phrase="student of Linguistics, teacher of Linguistics and researcher of
Linguistics.";
$phrase=~s/linguistic/computer science/gi;
print $phrase;
student of computer science, teacher of computer science and
researcher of computer science.

$sentence="Perl is so powerful.";
if($sentence=~m/perl/){
print "There is perl in sentence.\n";
}else{
print "Cannot find perl in sentence.\n";
}
Cannot find perl in sentence.

Regular expressions:basic structure 45

$sentence="Perl is so powerful.";
if($sentence=~m/perl/i){
print "There is perl in sentence.\n";
}else{
print "Cannot find perl in sentence.\n";
}
There is perl in sentence.

The following program counts the total number of A and a in adventure.txt.

counta.pl
open(F,"adventure.txt") or die ("Can't open file.\n");
read(F,$text,150000);
$number=($text=~s/a/a/gi);
print "The number of A's and a’s in Alice’s Adventures in Wonderland is:
$number.";
The number of A's and a’s in Alice’s Adventures in
Wonderland is: 8772.

The counting is done in statement 3, in which a is substituted by itself, and
$number gets the number of such substitutions. Note that here instead of a any
other letter, a space or even nothing can do.

x It ignores white spaces and the unprintable characters such as tabs, line
breaks, and so on. It’s not of much use except for putting notes within a pattern.
This can also be used in m//.

$phrase="student of Linguistics, teacher of Linguistics and researcher of
Linguistics.";
$phrase=~s/li
n g
ui

s ti
cs/computer science/gix;
print $phrase;
student of computer science, teacher of computer science and
researcher of computer science.

4.1.3 tr///

The syntax of tr/// is as follows:

Regular expressions: basic structure 46

 tr/characterset1/characterset2/

This operator does character substitution. It replaces characters in characterset1
with those in characterse2 one by one from the left, i.e., the first character of
characterset1 is replaced by the first character of characterset2, the second
character of characterset1 is replaced by the second character of characterset2,
etc. Look at the following example:

$phrase="cat, cat, jumps on mat.";
$phrase=~tr/act/odg/;
print $phrase
dog, dog, jumps on mog.

In the above example, a, c and t in cat, cat, jumps on mat are respectively
replaced by o, d and g.

If characterset2 has more characters than characterset1, those extra charact-
ers in characterset2 are ignored:

$phrase="cat, cat, jumps on mat.";
$phrase=~tr/act/odgh/;
print $phrase;
dog, dog, jumps on mog.

However, if characterset2 has fewer characters than characterset1, after all the
characters in characerset2 are used up, the remaining characters of characterset1
will all be replaced by the last character of characterset2:

$phrase="cat, cat, jumps on mat.";
$phrase=~tr/act/od/;
print $phrase;
dod,dod, jumps on mod.

In the above example, a is replaced by o and c by d; since there are only two
characters in characterset2 whose last character is d, t in characterset1 is
replaced by d.

The tr/// operator can use the range operator”-“ for character replacement:

$phrase="cat, cat, jumps on mat.";
$sentence=~tr/a-z/A-Z/;
print $sentence;
CAT, CAT, JUMPS ON MAT.

Regular expressions:basic structure 47

The following program picks out words that have numbers in them, such as
A4, AK47, etc.

numberword1.pl
1. open(F,"bncwordlist.txt") or die ("Can't open file.\n");
2. open(W,">result.txt") or die ("Can't create file.\n");
3. while ($word=<F>){
4. if($word=~tr/0-9/0-9/){
5. $number++;
6. print (W $word);
7. }
8. }
9. print (W "The number of words that have digits: $number");

Statement 4 checks whether a word has numbers. If it does, the character
substitution succeeds, $number is increased by 1 and the word that has numbers
in it is put to result.txt.

As in the case of the s/// operator, Perl records the number of character
substitutions the tr/// operator has made. The following structure gets this number:

$n=($variable=~tr/characterset1/characterset2/)
$phrase="cat, cat, jumps on mat.";
$number=($phrase=~tr/act/odg/);
print "$phrase\n";
print “Number of characters substituted: $number”;
dog, dog, jumps on mog.
Number of characters substituted: 8

The tr/// operator uses the following switches:

c This keeps the characters of a string unchanged if these characters are in

characterset1, while all other characters, including spaces, of the string will be
replaced by the last character of characterset2.

$phrase="cat, cat, jumps on mat.";
$phrase=~tr/act/!?/c;
print $phrase;
cat??cat????????????at?

In the above example, except for a, c and t in $phrase, which are in
characterset1, all the rest, including spaces and punctuation marks, are replaced
by the last character ? in characterset2. Here, if we use $phrase=~tr/act/?/c
instead of $phrase=~tr/act/!?/c, the result would be the same.

Regular expressions: basic structure 48

d This deletes the unmatched characters in characterset1.

$phrase="cat, cat, jumps on mat.";
$phrase=~tr/actm/odg/d;
print $phrase;
dog, dog, jups on og.

In the above example, m of characterset1 has no corresponding substitution
character in characterset2, so it’s deleted from $phrase.

s This switch keeps only one of the consecutive identical substitutions and
deletes the rest.

$phrase="caat, caaat, jumps on maaaat.";
$phrase=~tr/act/odg/;
print $phrase;
doog, dooog, jumps on moooog.

$phrase="caat, caaat, jumps on maaaat.";
$phrase=~tr/act/odg/s;
print $phrase;
dog, dog, jumps on mog.

The s switch is particularly useful in removing extra spaces in texts. In the
following, there are 12 spaces after the first cat and comma and 13 spaces after
the second cat and comma; the s switch keeps only one space for each of the two
consecutive space clusters:

$phrase="cat, cat, jumps on mat.";
$phrase=~tr/ / /s;
print $phrase;
cat, cat, jumps on mat.

s/// can’t be used in such situations:

$phrase="cat, cat, jumps on mat.";
$phrase=~s/ / /g;
print $phrase;
cat, cat, jumps on mat.

Regular expressions:basic structure 49

4.2 Regular expression quantifiers and other operators

4.2.1 The general quantifiers and wild card

In the previous section we looked at three regular expression operators: m//, s///
and tr///. However, these operators are not very useful without regular expression
quantifiers and other devices. Next, we’ll look at four such quantifiers: *, + ,?
and ·.

* This is also called the Kleene star. It’s used in regular expressions to stand
for zero or more consecutive occurrences of the immediate preceding character,
e.g. a* : zero or more a; CC*,: one or more C etc. The following program picks
out words with two or more consecutive e’s in bncwordlist.txt:

eeword.pl
1. open(F,"bncwordlist.txt") or die ("Can't open file.\n");
2. open(W,">result.txt") or die ("Can't create file.\n");
3. while($word=<F>){
4. if($word=~m/eee*/i){
5. $number++;
6. print (W "$word");
7. }
8. }
9. print (W "There are $number words with two or more e's in file.");

Statement 4 searches for two e’s followed by zero or more e.

+ This quantifier is used in regular expressions to stand for one or more
consecutive occurrences of the preceding character. For example, a+ means one
or more a, oo+ means two or more o’s etc. In lookinglass.txt, each paragraph is
terminated with two line breaks, while within the paragraph each line of text ends
with a line break. We’ll separate paragraphs with only one line break and remove
all other line breaks within a paragraph.

makeparagraph.pl
1. open(F,"lookingglass.txt") or die ("Can't open file.\n");
2. open(W,">result.txt") or die ("Can't create file.\n");
3. read(F,$text,170000);
4. $text=~s/\n/ /g;
5. $text=~s/ +/\n/g;#there two spaces before+
6. print (W $text);

Regular expressions: basic structure 50

In this program, statement 4 replaces each line break with a space.
Statement 5 replaces two or more consecutive line breaks with only one line
break.

? This quantifier is used in regular expressions to stand for zero or one

occurrence of the preceding character, e.g. b?: zero or one b; er?: e followed by
zero or one r, etc. The following searches for colour and color in bncwordlist.txt
using ?:

colour.pl
1. open(F,"bncwordlist.txt") or die ("Can't open file.\n");
2. open(W,">result.txt") or die ("Can't create file.\n");
3. while ($word=<F>){
4. if($word=~m/colou?r/i){
5. $number++;
6. print (W $word);
7. }
8. }
9. print (W "The number of colour or color is: $number");

In statement 4 u? means zero or one occurrence of u.

· It is a wild card that can stand for any character except the line break. It’s
often used with * and ?. In the following the wild card · is used together with ? to
return the different word forms of begin to its stem, leaving other words un-
changed:

$word="begin begins beginning began begun beginner beginners begging
beggar";
$number=($word=~s/beg.n+e?r?s?i?n?g?/begin/g);
print "$word: There are $number words whose stem is begin.";
begin begin begin begin begin begin begin begging beggar:
There are 7 words whose stem is begin.

In the regular expression /beg.n+e?r?s?i?n?g? / the wild card between g and n
matches i, a and u in begin, began and begun, while n+ matches one or more n,
in this case nn in beginning, beginner and beginners. e?r? matches either zero er
or just one er; it’s the same with s?i?n?g?. So this regular expression matches all
the variant forms of begin in $word, which are then replaced by begin, while
begging and beggar remain unchanged.

Next, we’ll use the wild card and + to write a program that picks words
ending in able, ous, ial, ious, less or ful and stores the results in separate output
files.

Regular expressions:basic structure 51

adjword.pl
1. open(F,"bncwordlist.txt") or die ("Can't open file.\n");
#Statement 2—7 create output files for storing words with the specified
endings
2. open(G,">ble.txt") or die ("Can't create file.\n");
3. open(H,">ious.txt") or die ("Can't create file.\n");
4. open(I,">less.txt") or die ("Can't create file.\n");
5. open(J,">ful.txt") or die ("Can't create file.\n");
6. open(K,">ous.txt") or die ("Can't create file.\n");
7. open(L,">ial.txt") or die ("Can't create file.\n");
#The following statement creates an output file for storing the number of
#words with the specified word endings.
8. open(W,">result.txt") or die ("Can't create file.\n");
9. while ($word=<F>){
10. if($word=~m/.+ble\n/){
11. $number_ble++;
12. print G $word;
13. }elsif($word=~m/.+ious\n/){
14. $number_ious++;
15. print H $word;
16. }elsif($word=~m/.+less\n/){
17. $number_less++;
18. print I $word;
19. }elsif($word=~m/.+ful\n/){
20. $number_ful++;
21. print J $word;
22. }elsif($word=~m/.+ous\n/){
23. $number_ous++;
24. print K $word;
25. }elsif($word=~m/.+ial\n/){
26. $number_ial++;
27. print L $word;
28. }
29. }
30. print (W "Number of words ending in _ble, _ious, _less, _full, _ous and

_ial\n");
31. print (W "The number of words ending in ble is: $number_ble\n");
32. print (W "The number of words ending in ious is: $number_ious\n");
33. print (W "The number of words ending in less is: $number_less\n");
34. print (W "The number of words ending in ful is: $number_ful\n");
35. print (W "The number of words ending in ous is: $number_ous\n");
36. print (W "The number of words ending in ial is: $number_ial\n");
37. $totalnumber=$number_ble+$number_ious+$number_less+$number_f

ul+$number_ous+$number_ial;

Regular expressions: basic structure 52

38. print (W "The total number of these words is: $totalnumber");

This program has 38 statements, but many of them are simple repetitions. The
regular expression used to get words with the specified endings is
m/.+wordending\n/. .+ stands for one or more letter before the specified word
endings, while \n ensures that the specified endings occur at the end of the words,
not in the middle, since the words in bncwordlist.txt are arranged in one vertical
column, each with a \n immediately after it.

4.2.2 The greediness of the quantifiers * and +

The quantifier * and + are “greedy”; that is, they try to extend their effect as far
as possible. In the sentence It is the so called greediness, isn't it?, if we want to
replace It is with It’s, it appears that the following would work:

$line="It is the so called greediness, isn't it?";
$line=~s/.*is/It's/;
print "$line\n";

It seems the combination of the wild card and the Kleene star would stand for It
and the white space before is, which would all be replaced by That’s. However,
the result is It’sn’t it? If we use + instead of *, the result is the same. This is the
so called greediness of * and +. There are two is’s in the sentence. The com-
bination of the wild card and * or + here means everything from the beginning to
the rightmost instance of is, which would all be replaced by It’s, hence the result.
To reduce the greediness, we can use the ? quantifier put immediately after * or
+ to confine the effect of .* or .+ from the start to the first is:

$line="It is the so called greediness, isn't it?";
$line=~s/.*?is/It's/;
print "$line\n";
It's the so called greediness, isn't it?

Here’s another example to show the greediness of * and +. The following

script attempts to replace The with Those using the pattern .*e:

$line="The greedy Perl quantifiers";
$line=~s/.*e/Those/;
print "$line\n";
Thosers

Regular expressions:basic structure 53

This is because .*e gets everything from the start to the last e, leaving only rs,
and everything preceding rs is replaced by Those. Now we’ll use ? to confine .*e
within the start and the first e:

$line="The greedy Perl quantifiers";
$line=~s/.*?e/Those/;
print "$line\n";
Those greedy Perl quantifiers

4.2.3 The alternative operator, anchors and the escape operator

Now let’s look at the alternative operators [] and |.

[characterset] This means any single character of characterset. The
following example removes vowel letters from the list of words:

$word="about cat educate bed dog Perl unit";
$word=~s/[aeiou]//g;
print $word;
bt, ct, dt, bd, dg, Prl, nt

| This is the pipe line alternative operator with function of OR, e.g. a|b|c|d|

means a or b or c or d.

$word="about cat educate bed dog Perl unit";
$word=~s/a|e|i|o|u|//g;
print $word;
bt, ct, dt, bd, dg, Prl, nt

Perl has two regular expression position anchors ^ and $, the former for

specifying the initial position of a string, while the latter the end position of a
string. The syntax of the position anchors is as follows:

s/^string/pattern/

m/^pattern/

s/string$/pattern/

m/string$/

Look at the following examples

Regular expressions: basic structure 54

$word="antelope aardvark llama";
$word=~s/[aeiou]//g;
print $word;
ntlp rdvrk llm

The above removes all the vowel letters from $word. Now we’ll use the ^ anchor:

$word="antelope aardvark llama";
$word=~s/^[aeiou]//g;
print $word;
ntelope aardvark llama

^[aeiou] means any of the five vowel letters at the beginning of $word. So this
time only a in antelope is removed. Now look at the use of the end position
anchor $:

$word="antelope aardvark llama";
$word=~s/[aeiou]$//g;
print $word;
antelope aardvark llam

Here [aeiou]$ means any of the five vowel letters at the end of $word. So Llama
now becomes llam.

However, placed inside the alternative operator [], ^ means NOT:

$word="about cat educate bed dog Perl unit";
$word=~s/[^aeiou]//g;
print $word;
aouaeuaeeoeui

In the above, the regular expression s/[^aeiou]//g removes letters except a, e, i, o,
u, accomplished by the use of ^ inside [].

Next, we’ll consider the use of the escape operator \. Suppose we want to
remove the punctuation marks from the following sentence with a regular
expression:

Processing is under way. Please wait...
The escape operator \ must be used:

$sentence="Processing is under way. Please wait...";
$sentence=~s/\.//g;
print $sentence;
Processing is under way Please wait

Regular expressions:basic structure 55

Without the escape operator, error will result because the full stop will be
regarded as the wild car. Of the non-alphanumeric characters listed below:

, . ? ! ; : ’ ” < > ~ ` ! @ # $ % ^ & * ()- _ = + { } [] \ | /
the following need the escape operator when treated as literals in s/// or m//:

. ? $ ^ * + - () { } [] | \ /
The following example removes the non-alphanumeric characters from $string
using the pipe line alternative operator |. Note the escape operator used before . ?

$ ^ * + - () { } [] | \ /.

$string=q(Remove these marks:,.?!'"*`%|<>+=_@()&~^#\/[]()\/{}$-);
$string=~s/\.|\?|\$|\-|\^|*|\+|\(|\)|\{|\}|\[|\]|\||\\|\/|%|&|~|`|:|'|!|,|"|#|@|_|=|<|>//g;
print $string;
Remove these marks

However, when inside the alternative operator [], only the following non-

alphanumeric characters need the escape operator when treated as literals:
^ \ / [] $ -

Look at the following example:

$string=q(Remove these marks:,.?!'"*`%|<>+=_@()&~^#\/[]()\/{}$-);
$string=~s/[\^\\\[\]\$\-\/:,.?!'"*`%|<>+=_@()&~#(){}]//g;
print $string;
Remove these marks

4. 3 Applications

So far we have covered a lot of ground in Perl programming. Next, we’ll try to
use what we have learned so far to write some practical programs.

4.3.1 Text tokenizer

First, we’ll write a program that tokenizes a text, i.e. breaking a text into indivi-
dual words arranged in a single column. The program is as follows:

tokenizer.pl
1. open(F,'adventure.txt') or die("File cant be opened.\n");
2. open(W,'>result.txt') or die("Can't create file.\n");
3. read(F,$text,150000);
#The following statement coverts non-alphanumeric characters, as well as

 #spaces, into spaces. Note the space after \n. The s switch turns two or
more consecutive spaces into only one space.

Regular expressions: basic structure 56

4. $text=~tr/[:,.?!'"*`%|<>+=_@(){}&~^#\/\\\[\]\$\-\n]/ /s;
5. $text=~s/^ | $//g; #remove initial and end space
6. $text=~s/ /\n/g; #turn spaces into line breaks
7. print (W "$text");
8. close(F);
9. close(W);

4.3.2 Computing syllabic word length

There are two ways to measure word length, one in number of letters, the other in
number of syllables. The former can be easily done with the length() function,
but the latter is not very straight forward. It’s difficult to separate words into
syllables even manually. There are rules for separating the syllables of a word.
The syllable structure of the English words is as follows: (nV)nCnV[nC(nV)].
nV is a vowel or a vowel cluster and nC is a consonant or a consonant cluster.
Here V and C can also mean vowel letters and consonant letters. nV within the
round brackets are optional; while those in the square brackets can be re-
duplicated. Generally, the number of syllables of a word is actually the number
of nV’s in it. However, there are exceptions and the following are some of them:

A. a consonant plus e at the end of a word does not form a syllable, e.g., live, like,

etc, except in a few words such as simile, recipe, etc ;
B. word final ble, gle, ple, sm etc constitute a syllable, e.g., people, syllable,

strangle, isolationism, etc;
C. vowel clusters such as ea, io, ia, uo can constitute either one syllable, or two

syllables, e.g., peasant, creation, ratio, biology, quote, duo, India, special, etc.

The above covers the majority of the constitution of word syllables, hence is
enough for our purpose. Now we’ll write a program to compute word length in
syllables. For the sake of simplicity, ia in medial position and io will be regarded
as two syllables while ea, uo and other vowel clusters as one syllable.

countsyllable.pl
1. open(F,"bncwordlist.txt")or die("Can't open file.\n");
2. open(R,">wordsyl.txt") or die("Can't create file.\n");
3. open(W,">syllainfo.txt") or die("Can't create file.\n");
4. while($word=<F>){
5. $wordnumber++;
#The following statement assigns $word to $word2 because $word2 will be
#destroyed in statement 7 for counting the number of a, e, i, o, u, y.
6. $word2=$word;
#The following statement roughly estimates number of syllables by
#counting number of a, e, i, o, u, y. This number will be adjusted in later

Regular expressions:basic structure 57

#statements. Here z can be any other letter.
7. $sylnumber=($word2=~s/[aeiouy]+/z/gi);
#The following is for strings consisting only of consonant letters such as St,
#Sqrt etc or word ending in sm.
8. $sylnumber++ if($sylnumber==0 or $word=~m/sm$/);
#In statements 9 and 10, e in tively is not a syllable, word final ial onstitute
#one syllable, and word final e preceded by letters other than e, i, o, a is not
#a syllable. So $sylnumber should be reduced by 1, with the exception of
#word final ple, ble, gle or words such as He, She, He, Be.
9. if($word=~m/tively$/ or $word=~m/ial$/ or $word=~m/[^eioa]e$/){
10. unless($word=~m/ple$/ or $word=~m/ble$/ or $word=~m/gle$/ or

$word eq "The\n" or $word eq"She\n" or $word eq "He\n" or $word eq
"Be\n"){

11. $sylnumber--;
12. }
13. }
14. print (R "$sylnumber\t$word");
15. $cumusylnumber+=$sylnumber;#for total number of syllables in

wordlist
16. $sylnumber=0; #return $sylnumber to 0 for the next word
17. }
18. $average=$cumusylnumber/$wordnumber;
19. print (W "The total number of words is: $wordnumber\n");
20. print (W "The average word length in number of syllables is:

$average\n");
21. close(F);
22. close(R);
23. close(W);

This program uses rule based syllable segmentation, but, as the saying goes, rules
are made to be broken. There are cases that are not dealt with in this program
such as e in words like tasteful, likely, simile, recipe etc; these are left to the
reader as an exercise. Unlike some branches of science that require zero error,
automatic natural language processing is notoriously error prone (e.g. machine
translation), so the result of a program should always be manually checked.

4.3.3 Removal of HTML codes in texts

Quite often texts to be dealt with are not clean ones—they have codes in them.
Many files have HTML (Hyper Text Markup Language) codes, such as web
pages, text files to be read with web browsers such Internet Explorer. The file
msndream.htm containing Shakespeare’s A Midsummer Night’s Dream is marked

Regular expressions: basic structure 58

with the HTML codes. To see these HTML codes, open it with Wordpad, not a
web browser where these codes are invisible. The following is an extract:

<HTML>
<HEAD>

<META HTTP-EQUIV="Content-Type" CONTENT="text/html;
charset=iso-8859-1">

<META NAME="GENERATOR" CONTENT="Mozilla/4.03 [en]
(Win95; I) [Netscape]">
<TITLE>Midsummer Night's Dream: Entire Play</TITLE>
<!-- saved from
url=(0056)http://www.chemicool.com/shakespeare/midsummer/
full.html -->
<LINK
href="Midsummer Night's Dream.files/shake.css"
media=screen rel=stylesheet
type=text/css>
</HEAD>
<BODY TEXT="#000000" BGCOLOR="#FFFFFF">

<TABLE WIDTH="100%" BGCOLOR="#CCF6F6" >
<CAPTION><TBODY>

</TBODY></CAPTION>

<TR>
<TD ALIGN=CENTER class="play">A
Midsummer Night's Dream </TD>
</TR>

<TR>
<TD ALIGN=CENTER class="nav">by William
Shakespeare </TD>
</TR>
</TABLE>

<H3>
ACT I</H3>

<H3>
SCENE I. Athens. The palace of THESEUS.</H3>

Regular expressions:basic structure 59

<BLOCKQUOTE><I>Enter THESEUS, HIPPOLYTA, PHILOSTRATE, and
Attendants</I></BLOCKQUOTE>
THESEUS

<BLOCKQUOTE>Now, fair Hippolyta, our
nuptial hour

Draws on apace; four happy days
bring in

Another moon: but, O, methinks,
how slow

This old moon wanes! she lingers
my desires,

Like to a step-dame or a dowager

Long withering out a young man
revenue.</BLOCKQUOTE>
HIPPOLYTA
<BLOCKQUOTE>Four days will quickly
steep themselves
in night;

In the above the HTML codes are all enclosed between < and >; the rest is

the actual text. Now we’ll write a program to remove these HTML codes to get
the clean text.

cleanhtm.pl
1. open(F,"msndream.htm") or die ("File can't be opened.\n");
2. open(R,">result.txt") or die ("Can't create file.\n");
3. while ($line=<F>){
4. if($line!~m/<LINK|type=|href=|<TITLE>|\ /){
5. $line=~s/<.*?>//g and $line=~s/^ +//;
6. print (R $line) if($line!~/^\n/);
7. }
8. }

The program loops between statements 3 and 8. In statement 4 lines with codes
such as <LINK, type=, href= and <TITLE> are not considered since lines with
those codes have no original text. Note the use of the NOT operator !, the pipe
line alternative operator | and the escape operateor \. Statement 5 removes non-
textual codes, which are enclosed between pairs of pointed brackets. ? is used to
prevent the greediness of *. The following is the above extract with the HTML
codes removed:

Regular expressions: basic structure 60

ACT I
SCENE I. Athens. The palace of THESEUS.
Enter THESEUS, HIPPOLYTA, PHILOSTRATE, and Attendants
THESEUS
Now, fair Hippolyta, our nuptial hour
Draws on apace; four happy days bring in
Another moon: but, O, methinks, how slow
This old moon wanes! she lingers my desires,
Like to a step-dame or a dowager
Long withering out a young man revenue.
HIPPOLYTA
Four days will quickly steep themselves
in night;

Exercises

1. Write a program to extract words that have five or more consecutive consonant
letters from bncwordlist.txt and count the number of such words.

2. Write a program using regular expressions to count the number of the different
word forms of make in adventure.txt .

3. There is tagged.txt which contains a section of Alice’s Adventures in
Wonderland with POS tags. Write a program to remove these POS tags and other
non-textual codes, and then compute its average syllabic word length.

4. text.xml contains part of Alice’s Adventures in Wonderland in the XML format.
Write a program to remove the XML codes, and then compute the syllabic word
length.

5. poswords.txt contains a list of words with their POS tags, which are enclosed
between a pair of double quotes as shown below:

"By No Means AV0"
"By PRP"
"By PRP-AVP"
"Can VM0"
"Capital NN1-AJ0"
"Capitalism NN1"

Write a program to remove the double quotes and the POS tags, separate phrases
such as By No Means into individual words and compute the average word length
in letters of all the words.

5 Regular expressions: advanced topics

In Chapter 4, we looked at the basic structures of regular expressions, regular
expression operators, quantifiers, etc. We also used regular expressions in some
practical programs and saw the advantage and power of regular expressions. In
this chapter, we’ll deal with some advanced topics on regular expressions. We’ll
examine the use of metacharacters, special variables, numbered variables and
back references. In addition, we’ll also look at three string handling functions.
Finally we’ll put what we learn in this chapter in some practical programs.

5.1 Metacharacters for regular expressions

The metacharacters for regular expressions are used to specify what sort of
characters, whether printable or non-printable, to be matched in the target string.
This makes pattern matching more flexible and convenient.

\w This metacharacter matches letters, numbers and the underscore _.

The following example removes alphanumeric characters from $string:

$string=qq((1).This is an example: _/[]{}\n|*^#\t&%$@=+-<>?!~`,';");
$string=~s/\w//g;
print $string;
(). : /[]{}
|*^# &%=+-<>?!~`,';"

In the above example, \w stands for all the alphanumeric characters and the
underscore in $string, which are replaced by nothing, leaving only the non-
alphanumeric characters, including the white space, the line break and the tab.

\W This is the opposite of \w; it stands for all the non-alphanumeric
characters, including the white space, line break and tab, except the underscore _.

$string=qq((1).This is an example: _/[]{}\n|*^#\t&%$@=+-<>?!~`,';");
$string=~s/\W//g;
print $string;
1Thisisanexample_

The following is a short program that computes the total number of the 26 letters
in adventure.txt.

letternumber.pl

Regular expressions: advanced topics 62

1. open(F, "adventure.txt") or die("Can't open file.\n");
2. read(F,$text,160000);
3. $text=~s/\W//g;#remove non-alphanumeric characters
4. $text=~s/[0-9]|_//g;#remove digits and the underscore
5. $letternumber=length($text);
6. print "The total number of letters used is: $letternumber.";
7. close(F);
The total number of letters used is: 107450.

\s This matches white space.

$string="This is an example of the use of metacharacters.";
$string=~s/\s//g;
print $string;
Thisisanexampleoftheuseofmetacharacters.

\S This matches anything but white space.

$string="This is 1 example of the use of metacharacters.";
$string=~s/\S/*/g;
print $string;
**** ** * ******* ** *** *** ** ***************

\d This matches a number.

In Chapter 4 there is a program called numberword1.pl that extracts words with
numbers within them. This was done with $word=~tr/0-9/0-9/. Now we’ll use \d
to do the same thing instead.

numberword2.pl
1. open(F, "bncwordlist.txt") or die("Can't open file.\n");
2. open(R,">result.txt") or die ("Can't create file.\n");
3. while($word=<F>){
4. if($word=~m/\d/g){
5. $wordnumber++;
6. print R $word;
7. }
8. }
9. print(R "The total number of alphanumeric words is: $wordnumber.\n");
10. close(F);
11. close(R);

\D This matches anything but a number.

Regular expressions: advanced topics 63

$string="The following are not letters: 0123456789,./';&()*, but the
following are: abcde...";
$string=~s/\D//g;
print $string;
0123456789

\b This matches a word boundary. The following is an example without the

use of \b:

$string="Is this the title of his thesis? Yes. It is. ";
$string=~s/is/was/gi;
print $string;
was thwas the title of hwas theswas? Yes. It was.

In the above, is in $string, whether it’s a word or part of a word, is all replaced
by was. The following replaces is with was only if is is an independent word
because of the use of \b:

$string="Is this the title of his thesis? Yes. It is.";
$string=~s/\bis\b/was/gi;
print $string;
was this the title of his thesis? Yes. It was.

\B This matches anything but a word boundary.

$string="Is this the title of his thesis? Yes. It is.";
$string=~s/\B/*/gi;
print $string;
I*s t*h*i*s t*h*e t*i*t*l*e o*f h*i*s t*h*e*s*i*s?* Y*e*s.*
I*t i*s.*

In the above, all the non-word-boundaries are replaced by *.

5.2 Special variables

The following are the special variables used in regular expressions.

$& This stands for the pattern to be matched in a string.

In the following, we separate It's useful, isn't it? Yes, it is! He replied enthusi-
astically. into three sentences and print the sentences on different lines. We’ll
use .?! as sentence delimiters.

Regular expressions: advanced topics 64

$sentence="It's useful, isn't it? Yes, it is! He replied enthusiastically.";
$sentence=~s/[.?!]\s/$&\n/g;
print $sentence;
It's useful, isn't it?
Yes, it is!
He replied enthusiastically.

In the above, the special variable $& in the second statement matches one of the
punctuation marks within the alternative operator followed by a space, which are
then replaced by the punctuation mark and a line break. Without the special
variable, the sentences would all be without sentence final punctuation marks.

In the following, we’ll use $& in a program to mark the different word forms
of make with four *’s on either side and count the total number of make and its
different word forms.

markmake.pl
1. open(F,"adventure.txt") or die ("File can't be opened.\n");
2. read(F,$text,160000);
3. open(R,">result.txt")or die ("Can't create file.\n");
4. $number=($text=~s/\bma(de|k(e|es|ing))\b/****$&****/gi);
5. print "The number of MAKE in text is: $number\n";
6. print R $text;
7. close(F);
8. close(R);

The total number of make and its different word forms are 76. Check result.txt to
see whether these different word forms of make are marked with *.

$` This stands for the string before the pattern to be matched.

$sentence="They all thought that warm days would never end.";
$sentence=~m/thought/;
print $`;
They all

$’ This stands for the string following the pattern to be matched.

$sentence="They all thought warm days would never end.";
$sentence=~m/thought/;
print $`;
that warm days would never end.

These special operators can be used together:

Regular expressions: advanced topics 65

$sentence="They all thought that warm days would never end.";
$sentence=~m/thought/;
print $&.$'.' '.$`;
thought that warm days would never end. They all

5.3 Back referencing

Suppose we want to search for the following pattern ABCDDCBA, such as the
string accbddddbcca in a text, back referencing is very suitable for such tasks.
Back referencing uses back reference variables in the form of \n or $n to refer
back to the specified strings. The string to be thus referred must be enclosed in
round brackets in the form of (stringtobereferred). If there are three back
referenced strings, then \1 refers back to the first back referenced string, \2 the
second back referenced string, and \3 the third back referenced string. Instead of
\n1, \n2 and \n3, we can also use $1, $2 and $3. The difference between \n and $n
is that both can be used in substitution in s/pattern/substitution/ while only \n can
be used in pattern in m/pattern/ or s/pattern/substitution/.

The following script tests whether the string kccxjj jjxcck is of the pattern
ABCD DCBA:

$pattern="The string kccxjj jjxcck is of the pattern ABCD DCBA";
if($pattern=~/k(c+)x(j+) \2x\1k/){
print "The string kccxjj jjxcck is of the pattern ABCD DCBA";
}
The string kccxjj jjxcck is of the pattern ABCD DCBA

Here \1 refers back to the pattern in the first pair of brackets, and \2 to the pattern
in the second. If there are more back referenced strings enclosed in brackets,
more back reference variables should be used, e.g. \3, \4 and so on. In the above
case only \n can be used.

In the following, the back reference variables are used in substitution in
s/pattern/substitution/:

$line="ONOMATOPEAIA Frequency 1 Length 12 This word
is rare.";
$line=~s/(\w+)\s+\w+\s+(\d)\s+\w+\s+(\d+)\s+.+/$2 $3 $1/g;
print $line;
1 12 ONOMATOPEAIA

In the above, (\w+) stands for ONOMATOPEAIA and is back referenced by $1,
the following \s+\w+\s+ stands for Frequency with spaces on either side. (\d)
stands for 1, back referenced by $2, while the following \s+\w+\s+ stands for

Regular expressions: advanced topics 66

Length with spaces on either side. (\d+) stands for 12, back referenced by $3.
Here we can also use \1, \2 and \3 as back reference variables.

5.4 Quantifying expressions

In the preceding chapter, we learned the use of general quantifiers; now we’ll
look at the quantifying expressions that are used to specify the occurrence of a
pattern.

{n} This expression means n occurrences of a pattern.

The following is a program that uses this expression to get words with seven
consecutive consonant letters in bncwordlist.txt

consonant2.pl
1. open(F,"bncwordlist.txt") or die ("File can't be opened.\n");
2. open(W,">result.txt")or die ("Can't create file.\n");
3. while($word=<F>){
4. if($word=~m/[bcdfghjklmnpqrstvwxyz]{7}/i){
5. $number++;
6. print W $word;
7. }
8. }
9. print(W "The total number of words that have seven consecutive

consonant letters or more is: $number.\n");
10. close(F);
11. close(W);
Aaaaaaaaaaahhhhhhhhhh
Aaaaarrrggghhh
Aberystwyth
Argyllshire
Arrhythmia
Arrhythmic
Blythswood
Brachyrhynchus
Cccckkk
Cylchgrawn
Dyffryn
Eglwyswrw
Gcggatcttgttgacgaccaggg
… …

Regular expressions: advanced topics 67

The total number of words that have seven consecutive
consonant letters or more is: 43.

{n,} This means at least n occurrences of a pattern.

The following gets words containing at least two consecutive o’s.

doubleo.pl
1. open(F,"bncwordlist.txt") or die ("File can't be opened.\n");
2. open(W,">result.txt")or die ("Can't create file.\n");
3. while($word=<F>){
4. if($word=~m/o{2,}/i){
5. $number++;
6. print W $word;
7. }
8. }
9. print(W "The total number of words that have at least two consecutive

O's is: $number.\n");
10. close(F);
11. close(W);
… …

Zoologist
Zoology
Zoolympics
Zoom
Zoonomia
Zoonoses
Zooplankton
Zoot
Zooxanthellae
Zzaperoonies
The total number of words that have at least two consecutive
O's is: 1718.

{m,n} This expression means the number of a pattern is between m and n

inclusive. The following program gets words with 2—3 initial consecutive vowel
letters.

vowel2_3.pl
1. open(F,"bncwordlist.txt") or die ("File can't be opened.\n");
2. open(W,">result.txt")or die ("Can't create file.\n");
3. while($word=<F>){

Regular expressions: advanced topics 68

4. if($word=~m/^[aeiou]{2,3}/i){
5. $number++;
6. print W $word;
7. }
8. }
9. print(W "The total number of words that begin with 2--3 vowel letters is:

$number.\n");
10. close(F);
11. close(W);
Aa
Aaa
Aaaaa
Aaaaaaaaaaahhhhhhhhhh
Aaaaaaarrrrgh
Aaaaah
Aaaaarrrggghhh
Aaaaaw
Aaaaw
Aaaeeeyaaa
Aaah
Aaargh
Aachen
Aacr
Aad
… …
The total number of words that begin with 2--3 vowel letters
is: 1553.

5.5 String manipulation functions and the for program control structure

Perl has the following string manipulation functions.

index(string,character) This function gets the position of the first character
in string. If character occurs more than once, index(string,character) gets the
position of the first occurrence. The position is measured from the left of string
in number of characters (including white spaces).

$line="Peter ran to the door, and yelled at the dog in his pajamas, and the
dog ran away yelping.";
$position=index($line,'dog');

Regular expressions: advanced topics 69

print $position;
41

rindex(string,character) This function measures the position of the last

occurrence of character in string. However, if character occurs only once,
rindex(string,character) and index(string,character) are the same.

$line="Peter ran to the door, and yelled at the dog in his pajamas, and the
dog ran away yelping.";
$position=rindex($line,'dog');
print $position;
69

substr(string,m,n) This function cuts n characters off string from position m

measured from the left of string in number of characters.

$line="This is a demonstration of SUBSTR.";
$line1=substr($line,0,4);
$line2=substr($line,27,7);
print ("$line1\t$line2");
This SUBSTR.

Next, we’ll look at the for program control structure. This structure is like

the while control structure in that it creates a loop within which statements are
executed. The syntax of the for structure is as follows:

for(n=m; n<x; n++){
statements to be executed
}

Here we can also use n<x, n--, n+=k, n-=k etc. m is the initial value assigned to
n; n<x or n>x is the condition: as long as n<x or n>x, statements between the
curly brackets are executed, after which n is increased or decreased by 1; or by
any other value, such as 2, 3, 4…etc. As soon as n equals x, the program goes out
of the loop. In the following example, the initial value of $i is set to 1 and is
auto-increased by 1 until $i equals 11:

for($i=0;$i<11;$i++){
print $i;
}
012345678910

Regular expressions: advanced topics 70

In the following example, the initial value of $i is set to 20, and it’s auto-de-
creased by 2 until it equals 10:

for($i=20;$i>10;$i-=2){
print $i;
}
201816141210

The following script repeatedly cuts a character from $string and outputs it

to the screen until the value of $i equals 0:

$string="This is a demonstration";
$stringlength=length($string);
for($i=$stringlength;$i>0;$i--){
$cut=substr($string,0,1);
$string=substr($string,1,$stringlength);
print $cut."*";
}
T*h*i*s* *i*s* *a* *d*e*m*o*n*s*t*r*a*t*i*o*n*

Next we’ll use substr, rindex and the for structure to write a program to
divide adventure.txt into 20 text chunks of roughly equal length, and each of the
chunks ends in a complete sentence.

dividefile.pl
1. open(F,"adventure.txt") or die ("File can't be opened.\n");
2. read(F,$text,150000);
3. $textlength=length($text);
4. $chunklength=$textlength/20;
5. for($number=1;$number<21;$number++){
6. $chunk=substr($text,0,$chunklength+110);
#The following statement gets the position of the last full stop in $chunk.
7. $laststop=rindex($chunk,".")+1;
#The following assigns a chunk $lastop in length to $chunk.
8. $chunk=substr($text,0,$laststop);
#The following removes this chunk from $text.
9. $text=substr($text,$laststop);
#Statements 10--11 create output file names alice1.txt, alice2.txt, alice3.txt
#etc.
10. $output="alice".$number.".txt";
11. open(W,">$output")or die ("Can't create file.\n");
12. print W $chunk;
13. }

Regular expressions: advanced topics 71

14. close(F);
15. close(W);

In this program, in statement 6 $chunk is assigned a text chunk with a length of
$chunklength+110. Why 110 is added? This is because we can not ensure the
chunk ends in a complete sentence, or worse, not even ends in a complete word.
Suppose a chunk ends in I think I could, if I only know how to begin.' For, you
see, so many out-of-the-way things had happened lately, that Alice had begun to
think that very few things indeed were really impossible. There seemed to be no
use in waiting by the little door, so sh, then the characters after the last full stop
of this chunk should be removed so as to end this chunk in a complete sentence.
And instead of assigning exactly $chunklength characters to $chunk from $text,
each chunk would be more or less 110 characters shorter than $chunklength, and
the last chunk cut would be much longer than $chunklength. That’s the logic
behind the addition of 110; this value is a rough estimation.

5.6 Applications

In this section, we’ll try to use what we’ve learned in this chapter to write some
practical programs.

5.6.1 Extraction of POS tags

In the study of word class distribution, we need to extract POS tags from tagged
texts. There are several tag sets used for marking the part of speech of a word.
The CLAWS POS tag set is one of them. The following is a sentence of
adventure.txt and is tagged with the CLAWS-5 tag set:

<s>

ALICE_NP1 'S_GE ADVENTURES_NN2 IN_II WONDERLAND_NP1

CHAPTER_NN1 I_ZZ1 Down_II the_AT Rabbit-Hole_NP1

Alice_NP1 was_VBDZ beginning_VVG to_TO get_VVI very_RG

tired_JJ of_IO sitting_VVG by_II her_APPGE sister_NN1

on_II the_AT bank_NN1 ,_, and_CC of_IO having_VHG

nothing_PN1 to_TO do_VDI :_: once_RR or_CC twice_RR

she_PPHS1 had_VHD peeped_VVN into_II the_AT book_NN1

her_APPGE sister_NN1 was_VBDZ reading_VVG ,_, but_CCB

it_PPH1 had_VHD no_AT pictures_NN2 or_CC

conversations_NN2 in_II it_PPH1 ,_, `_" and_CC what_DDQ

is_VBZ the_AT use_NN1 of_IO a_AT1 book_NN1 ,_, '_GE

Regular expressions: advanced topics 72

thought_NN1 Alice_NP1 `_" without_IW pictures_NN2 or_CC

conversation_NN1 ?_? '_"

</s>

Now we’ll write a program to extract the POS tags from the sentence.

getpostag.pl
1. open(F,"tagged.txt") or die("File does not exist.\n");
2. read(F,$text,7000);
3. open(W,">result.txt") or die("Can't create file.\n");
4. $text=~s/[.?,!'":()]_[.?,!'":()]//g;
5. $text=~s/\<.+?\>//g;
6. $text=~s/.*?_(\w+)\s.*?/\1 /g;
7. $text=~s/\n//g;
8. print W $text;
9. close(F);
10. close(W);

In this program, statement 4 removes punctuation marks, which are in the form
of ._., ?_?, !_! etc. Statement 5 removes the non-textual sentence marker <s>
and </>. Note the use of .+? to avoid greediness. Statement 6 extracts the POS
tags, which are in the form of _ NP1, _ NN2 , _VVD etc, followed by a white
space. Note the use of .*? to avoid greediness. (\w+)\s gets POS tags back-
referenced by \1. Statement 7 removes line breaks. The following is part of the
result, which are the POS tags of the above tagged sentence:

NP1 GE NN2 II NP1 NN1 ZZ1 II AT NP1 NP1 VBDZ VVG TO VVI
RG JJ IO VVG II APPGE NN1 II AT NN1 CC IO VHG PN1 TO VDI
RR CC RR PPHS1 VHD VVN II AT NN1 APPGE NN1 VBDZ VVG CCB
PPH1 VHD AT NN2 CC NN2 II PPH1 CC DDQ VBZ AT NN1 IO AT1
NN1 GE NN1 NP1 IW NN2 CC NN1

5.6.2 Making concordance for a text

The concordance of a word is the natural context on either side of the word.
Usually the context, often referred to as the span, contains 3—5 words on either
side, and the word with such contexts is called the key word. The key words are
normally centre-justified. The following program makes concordance of every
word in adventure.txt. The key words are all centre-justified, with a five-word
span on either side.

concordance.pl
1. open(F,"adventure.txt") or die ("Can’t open file!\n");

Regular expressions: advanced topics 73

2. open(R,">result.txt") or die("File does not exist!\n");
3. read(F,$text,150000);
4. $text=~s/[\n\-]//g;
5. $text=~tr/ / /s; #turn two or more consecutive spaces into one
6. $text='* * * * *'.$text.' * * * * * ';
7. $textlength=length($text);
8. while (length($text)>40){
9. $concordance=$text;
10. $concordance=~s/^((\S+\s){5})(\S+)\s((\S+\s){5}).*/$1$3$4/;
11. $leftconcordlength=length($1);
12. $spaceposition=index($text,' ');
13. $text=substr($text,$spaceposition+1,$textlength);
14. $centrejustify=' 'x(45-$leftconcordlength);
15. $concordance=$centrejustify.$1.(uc $3).' '.$4;
16. print (R "$concordance\n");
17. }
18. close(F);
19. close(R);

In this program, statement 6 adds 5 asterisks as dummy words on both sides of
$text because the first 4 words and the last four words of $text don’t have enough
words in their spans. Statements 8—17 are a loop, within which words are taken
from $text one by one, with a five-word span on either side. The concordance of
a word is made by ^((\S+\s){5})(\S+)\s((\S+\s){5}) in statement 10. ^(\S+\s){5}
gets the first five words as the left span of the key word; the following (\S+) gets
the key word, and the rest the right five-word span. The left span, the key word
and the right span are back-referenced by $1, $3 and $4. Note that in back-
referencing, for nested bracketing, the sequence is in the following order: 1(2()2)1

3()3 4(5()5)4, etc. Statement 11 measures the length of the left span; statements 12
gets the position of the space after the key word, and statement 13 removes this
word together with the space from $text. Statements 14—15 centre-justify the
key word. i.e. $3, which is converted into upper case. The concordance and the
key word is outputted to result.txt in statement 16, after which the program goes
back to statement 9 to make the concordance of the next word, until all the words
in the text are exhausted.

5.6.3 Extraction of lexical bundles from texts.

In conversation and written discourse we often see word sequences such as at the
same time, it used to be, the end of the and so on. These lexical sequences are
called lexical bundles. Lexical bundles are recurring sequences of word forms in
natural discourse. In bundle.txt there are some of the lexical bundles commonly

Regular expressions: advanced topics 74

used in conversation. The following program extracts these lexical bundles from
adventure.txt and arranges the extracted lexical bundles in the following form:

9. THE END OF THE

 (1) and this time it vanished quite slowly,

beginning with **THE END OF THE** tail, and ending with

the grin, which remained some time after the rest of it

had gone.

 (2) `Now at OURS they had at **THE END OF THE**

bill, "French, music, AND WASHING--extra.

 (3) ' cried the Gryphon, and, taking Alice by the

hand, it hurried off, without waiting for **THE END OF

THE** song.

 (4) ' `They're putting down their names,' the Gryphon

whispered in reply, `for fear they should forget them

before **THE END OF THE** trial.

getbundle.pl
1. open(F,"bundle.txt")or die ("bundle.txt can't be opened\n");
2. open(G,"adventure.txt")or die ("adventure.txt can't be opened\n");
3. read(G,$text,150000);
4. open(R,">result.txt") or die("File can't be created.\n");
5. $text=~s/\n//g;
6. $text=~tr/ / /s;
7. while ($bundle=<F>){
8. $getbundle=$textb=$text;
9. chomp $bundle;
10. if ($textb=~m/\b$bundle\b/i){
11. $bundletype++;
12. $bundleb=uc $bundle;
13. print (R "\n$bundletype. $bundleb\n");
14. }
15. while ($textb=~m/\b$bundle\b/i){
16. $bundlefreq++;
17. $getbundle=~s/(.*?\b$bundle\b.*?[.?;!]).*/\1/i;
18. $getbundle=~s/.*[.?;!](.*\b$bundle\b.*)/\1/i;
19. $textb=~s/.*?\b$bundle\b.*?[.?;!]//i;
20. $getbundle=~s/\b$bundle\b/ **$bundle** /i;
21. $getbundle=~s/\b$bundle\b/uc $bundle/e;
22. print (R " ($bundlefreq) $getbundle\n");
23. $getbundle=$textb;
24. }

Regular expressions: advanced topics 75

25. $bundlefreq=0;
26. }
27. close(F);
28. close(G);
29. close(R)

This program opens two input files: adventure.txt and bundle.txt, and one output
file, result.txt, and has two loops, the outer loop and the inner loop. The outer
loop is between statements 7 and 26, in which lexical bundles are taken one by
one from bundle.txt and searched for in adventure.txt; the inner loop is between
statements 15 and 24, in which the occurrences of $bundle is computed.
Statement 8 assigns the value of $text to $getbundle and $textb. The use of $textb
is to reserve the original value of $text. Statement 9 removes the line break of
$bundle. Statement 10 checks whether $textb has $bundle. Statement 11 counts
the number of different lexical bundles in $textb. Statement 12 assigns the
uppercase $bundle to $bundleb, which serves as the heading of a lexical bundle
in the output file, under which the sentences that contains the bundle are listed. In
statement 17 ~s/(.*?\b$bundle\b.*?[.?;!]).*/\1/ gets a text chunk from the
beginning of $getbundle to the sentence that contains the bundle. This chunk is
further processed in statement 18, where only the sentence containing the bundle
is kept, done by back-referencing, the rest all discarded. Statement 19 removes
this bundle from $textb. Statements 20—21 mark the extracted bundle with two
*’s on either side and turn it into upper case, both for easy viewing. Statement 23
assigns the value of $textb to $getbundle for the next instance of $bundle in what
remains of $textb. After the entire contents of $textb have been searched, the
program goes out of the inner loop, and $bundlefreq is reset to 0 in statement 25
for the next bundle. Then the program goes to statement 8 for a new bundle.

5.6.4 A Chinese tokenizer

The Chinese language is different from the English language as far as the com-
puter is concerned in that it’s a double byte language; that is, a Chinese character
has two bytes while an English letter has one. In addition, in a Chinese text, there
are no word delimiters, while in English texts generally words are separated by a
white space on either side. To make matters worse, many texts in Chinese have
foreign words composed of one-byte characters, one-byte Arabic numerals, one
byte punctuation marks, etc. The following is an example of a text in Chinese:

Perl是一种功能强大但简单易学的计算机语言， Perl现有5.6到

Perl 5.10版本。Perl有些函数与C语言相似。Perl可用如WIN32、

Macintosh、Linux、VMS等不同操作平台。Perl在语言和文学研

究、语言和文学教学、字典编撰等诸多领域中有着极其广泛的应

Regular expressions: advanced topics 76

用，例如统计词频，排序、计算语篇平均词长、句长、词汇密

度，单词查询、研究单词搭配、覆盖率、出现概率、文体比较、

句子结构、语法等等。可以进行极其复杂的语言处理,但编程非常

简单,可处理任何自然语言。

Texts like the above are difficult to tokenize. One way to tokenize a Chinese text
is to make continuous two-byte cuts from the start to the end. But, as shown
above, many Chinese texts have one-byte characters. In the above example, there
is the letter C, which is one byte long. If a two-byte cut is made, the result would
be C plus the first half of the following Chinese character, and if this continues,
the result would be a mess of garbled codes.

The following program takes the above into consideration and can properly
tokenize Chinese texts mixed with one-byte characters.

tokenchinese.pl
1. open(F,"chinese.txt")or die("File does not exist.\n");
2. read(F,$text,2000);
3. open(R,">result.txt") or die("Can't create file.\n");
4. $text=~s/[\s\t\n]//g;
5. $text=~tr/ //s;
6. $linelength=length($text);
7. while(length($text)>0){
8. $getcharacter=substr($text,0,1);
9. if(ord($getcharacter)<127){
10. $text=substr($text,1,$linelength);
11. $characters.=$getcharacter;
12. }else{
13. $characters.=' ';
14. $getcharacter=substr($text,0,2);
15. $text=substr($text,2,$linelength);
16. $characters.=$getcharacter;
17. }
18. }
19. print(R $characters);
20. close(F);
21. close(R);

In the above program, statement 6 measures the length of $text. Statements 7—
18 are a loop, in which tokenization is done. Statement 8 assigns one byte from
$text to $getcharacter. Statement 9 checks if $getcharacter now is a one-byte
character whose ASCII code value is less than 127, or half of a two-byte char-
acter, whose ASCII code value is greater than 127. If it’s a one byte character, i.e.
an English letter, statement 10 removes this one byte from $text. Statement 11

Regular expressions: advanced topics 77

puts this character to $character, and then the program goes to statement 8 for
the next character. However, if it’s half of a Chinese character, its ASCII code
value is greater than 127, the program goes to statement 13, which adds a white
space after what have been stored so far in $character. Statement 14 assigns a
two-byte character to $getcharacter, and this two-byte character is removed from
$text in statement 15. Statement 16 adds this two-byte character to $characters.
Then the program goes to statement 8 again to start the next round. The result is
shown below:

Perl 是 一 种 功 能 强 大 但 简 单 易 学 的 计 算 机 语
言 ，Perl 现 有 5.6 到 Perl5.10 版 本 。Perl 有 些 函 数
与C 语 言 相 似 。Perl 可 用 如 WIN32 、Macintosh 、
Linux 、VMS 等 不 同 操 作 平 台 。Perl 在 语 言 和 文 学
研 究 、 语 言 和 文 学 教 学 、 字 典 编 撰 等 诸 多 领
域 中 有 着 极 其 广 泛 的 应 用 ， 例 如 统 计 词 频 ，
排 序 、 计 算 语 篇 平 均 词 长 、 句 长 、 词 汇 密
度 ， 单 词 查 询 、 研 究 单 词 搭 配 、 覆 盖 率 、 出
现 概 率 、 文 体 比 较 、 句 子 结 构 、 语 法 等 等 。
可 以 进 行 极 其 复 杂 的 语 言 处 理, 但 编 程 非 常 简
单, 可 处 理 任 何 自 然 语 言 。

Now all the Chinese words are separated by white spaces, but the one-byte
characters are kept unchanged. Tokenized Chinese texts are extremely useful
because nearly all the programs for processing English can be used for tokenized
Chinese texts as well.

Exercises

1. Write a program that marks all the word forms of be (including be) in
adventure.txt with **** on either side, and count the total number of it.

2. Write a program to pick out as soon as from adventure.txt and count its
frequency.

3. Write a program to get all the collocations of go and its different word forms
from adventure.txt with a five-word span on either side.

4. In bncwordlist.txt there are many out-of-dictionary words such as
Arimaddeyya, P400ps etc. Write a program to remove these non-words as many
as possible and put them into a file, and output in-dictionary words to another file.
Check the results for errors and then improve the program to reduce the errors.

Regular expressions: advanced topics 78

5. Write a program that can turn adventure.txt into a list of different word types
with frequencies in the following form:

1630 the
4 adventure
46 happy

6 Arrays

An array is a structured data storage device. It’s like a table in that it has
sequenced rows in which to store data. Such rows are called array elements. The
number of elements an array can have depends on the memory size of your com-
puter. In this chapter we’ll learn array creation, manipulation and application.

6.1 Array creation

In Perl, the name of an array is prefixed by @. For example, if we want to create
an array to store the different chapters of a book, we can name it @bookchapter
and then put the first chapter in its first element, the second in its second element
and so on. Perl has a strange way of numbering the elements of an array. That is,
element numbers start from 0 and these numbers are enclosed between a pair of
square brackets. The elements of an array are prefixed by $ followed by the array
name and element number. So the first element of @bookchapter is
$bookchapter[0], the second $bookchapter[1], the third @bookchapter[2] and so
on. To change this default setting, use the special variable $[and assign the
desired starting number to it. If we want the first element of an array to be 1
instead of 0, then simply assigns 1 to it: $[=1.
 Arrays like @bookchapter are called one-dimensional arrays because the
elements have no substructures. Arrays whose elements have hierarchical struc-
tures are called multi-dimensional arrays. Elements of a multi-dimensional array
are in the form of $arrayname[x][y], $arrayname[x][y][z] and so on.

6.1.1 One dimensional arrays

Now we’ll create a one-dimensional array called @shortarray to hold the fol-
lowing words:

This
is
a
short
array

We can assign these words to the array manually one by one:

$shortarray[0]='This';
$shortarray[1]='is';
$shortarray[2]='a';
$shortarray[3]='short';
$shortarray[4]='array';

Arrays 80

We can access any of the words stored in the array by referring to their element
number:

print $shortarray[3]
short
print $shortarray[0]
This
print $shortarray[4]
array

We can also print out all the elements of the array:

 print @shortarray
Thisisashortarray

We can input data to an array using round brackets:

@shortarray=('This','is','a','short','array');
print $shortarray[1];
is
print $shortarray[0];
This
print $shortarray[2];
a
print @shortarray;
Thisisashortarray

We can use the range operator within the brackets for consecutive values in the
ascending order:

@shortarray=(a..z,A..Z);
print $shortarray[15];
p
print $shortarray[31];
F
print @shortarray
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
@shortarray=(80..90);
print $shortarray[1];
81
print $shortarray[6];
86

Arrays 81

There is a special operator $# that returns the largest element number of an array.
It is used as follows:

$#arrayname

@shortarray=(a..z,A..Z);
print $#shortarray;
51

Since the first element of an array is given the number of 0 by default, the
number of elements in @shortarray is 52. If an array is empty, $# returns -1:

print $#emptyarray;
-1

Two or more arrays can be combined together using the following expressions:

@newarray=(@array1,@array2…@arrayn)

Look at the following examples:

@letters=(a..z);
@numbers=(0..9);
@alphanumeric=(@letters,@numbers);
print $alphanumeric[24];
y
print $alphanumeric[30];
4

The following function can reverse the elements of an array:

reverse(@arrayname)

@letters=(a..z);
@letters_reverse=reverse(@letters);
print $letters_reverse[0];
z
print $letters[2];
x

Of course this function can also reverse a string:

$reverseword=reverse("Perl");

Arrays 82

print $reverseword;
lreP

6.1.2 Multi-dimensional arrays

Multi-dimensional arrays are not as useful as one-dimensional arrays in language
research. Next, we’ll create a three-dimensional array. Suppose we have the
following set of words:

Set 1:
Subset 1: apple, peach, apricot, pear
Subset 2: cabbage, onion, lettuce, spinach
Subset 3: pine, birch, elm, acacia
Subset 4 rose, carnation, tulip, daisy
Set 2:
Subset 1 bee, hornet, fly, mosquito
Subset 2 dove, eagle, owl, sparrow
Subset 3 chicken, duck, goose, turkey
Subset 4 carp, salmon, tuna, cod

This set of data has a three-level hierarchical structure: set->subset->word. Now
we’ll write a program in which to create a three-dimensional array called
@wordset to store this set of data while keeping its structures unchanged.

multiarray.pl
1. open(W,">result.txt");
2. $wordset[0][0][0]='apple';
3. $wordset[0][0][1]='peach';
4. $wordset[0][0][2]='apricot';
5. $wordset[0][0][3]='pear';
6. $wordset[0][1][0]='cabbage';
7. $wordset[0][1][1]='onion';
8. $wordset[0][1][2]='lettuce';
9. $wordset[0][1][3]='spinach';
10. $wordset[0][2][0]='pine';
11. $wordset[0][2][1]='birch';
12. $wordset[0][2][2]='willow';
13. $wordset[0][2][3]='acacia';
14. $wordset[0][3][0]='rose';
15. $wordset[0][3][1]='carnation';
16. $wordset[0][3][2]='tulip';
17. $wordset[0][3][3]='daisy';
18. $wordset[1][0][0]='bee';
19. $wordset[1][0][1]='hornet';

Arrays 83

20. $wordset[1][0][2]='butterfly';
21. $wordset[1][0][3]='mosquito';
22. $wordset[1][1][0]='dove';
23. $wordset[1][1][1]='eagle';
24. $wordset[1][1][2]='peacock';
25. $wordset[1][1][3]='sparrow';
26. $wordset[1][2][0]='chicken';
27. $wordset[1][2][1]='duckling';
28. $wordset[1][2][2]='goose';
29. $wordset[1][2][3]='turkey';
30. $wordset[1][3][0]='carp';
31. $wordset[1][3][1]='salmon';
32. $wordset[1][3][2]='barracuda';
33. $wordset[1][3][3]='shark';
34. $[=1;
35. for($i=1;$i<3;$i++){
36. print W "Set $i\n";
37. for($j=1;$j<5;$j++){
38. print W "Subset ($j) ";
39. for($k=1;$k<5;$k++){
40. print W "$k. $wordset[$i][$j][$k]\t";
41. }
42. print W "\n";
43. }
44. print W "\n";
45. }
46. close(W);

In the program, statements 2—17 input the data of Set 1, while statements 18—
33 input the data of Set 2. Statement 34 changes the default starting element
number from 0 to 1. Statements 35—45 output the contents of the array, keeping
their original hierarchical structure. Note the use of the three for program control
structures. The first for structure is between statement 35 and statement 45, for
processing the sets, subsets and words. The second is between statement 37 and
statement 43 for processing the subsets, and the third is between statement 39
and statement 41 for outputting the words. The result is shown below:

Set 1
Subset (1) 1. apple 2. peach 3. apricot 4. pear
Subset (2) 1. cabbage 2. onion 3. lettuce 4. spinach
Subset (3) 1. pine 2. birch 3. willow 4. acacia
Subset (4) 1. rose 2. carnation 3. tulip 4. daisy

Set 2

Arrays 84

Subset (1) 1. bee 2.hornet 3. butterfly 4. mosquito
Subset (2) 1. dove 2. eagle 3. peacock 4. sparrow
Subset (3) 1. chicken 2. duckling 3. goose 4. turkey
Subset (4) 1. carp 2. salmon 3. barracuda 4. shark

6.1.3 Converting texts into arrays

Suppose we want to put adventure.txt into an array called @aliceword, with each
word as an array element, and then output these words, none of the above ways
are practical because the time and labour involved. In such cases, the following
functions should be used for automatic array input and output.

split(/delimiter/,$variable) This function splits the contents stored in
$variable into individual array elements at delimiter.

$line ='This is a short array.';
@line=split(/ /,$line);

In the above, the variable $line contains five words; the split function separates
$line by the white space into individual array elements of @line. The following
outputs the specified elements of @line:

print ("$line[0]\n");
This
print ("$line[4]\n");
short

However, in the above example, outputting the elements of @line was still

done manually. The following foreach function can be used for automatic array
output:

foreach $variable(@arrayname){
statements to be executed
}

The foreach function gets each of the elements of an array from the top to the
bottom, and the element is then handled by the statements between the pair of
curly brackets. Now we’ll use the split function and the foreach function together
for automatic array input and output:

$line ='This is a short array.';
@line=split(/ /,$line);

Arrays 85

foreach $word(@line){
print “$word\n”;
}
This
is
a
short
array

In the above example, the contents of $line are split at the white space and then
assigned to $word by the split function; $word is then printed followed by a line
break.

Next we’ll write a program to turn each of the words in adventure.txt into an
array element, count the total number of the words and then output these words
to a file.

split.pl
1. open(F,'adventure.txt') or die("File cant be opened.\n");
2. open(W,'>result.txt') or die("Can't create file.\n");
3. read(F,$text,150000);
4. $text=tr/[.,?";`':!()\n\t*\-]/ /g;
5. $text=~s/^ | $//;
6. @textarray=split(/ /,$text);
7. foreach $word(@textarray){
8. $number++;
9. print (W "$word\n");
10. }
11. print (W "The total number of words in text is: $number");
12. close(F);
13. close(W)

6.2 Functions for array operations

In this section, we’ll look at some useful functions for array manipulations.

6.2.1 Functions for array input and output

There are functions for inputting data to and outputting data from an array. They
are the following:

Arrays 86

push(@arrayname,string) This function adds string as an element to
@arrayname. The push function always adds an element to the bottom of an
array.

push(@shortarray,'This');
push(@shortarray,'is');
push(@shortarray,'a');
push(@shortarray,'short');
push(@shortarray,'array');
print $shortarray[4];
array

unshift(@arrayname,string) This function adds string to the top of

@arrayname:

unshift(@shortarray,'This');
unshift(@shortarray,'is');
unshift(@shortarray,'a');
unshift(@shortarray,'short');
unshift(@shortarray,'array');
print "$shortarray[0]\n";
array
print "$shortarray[1]\n";
short
print "$shortarray[2]\n";
a
print "$shortarray[3]\n";
is
print "$shortarray[4]\n";
This

shift(@arrayname) This function gets an element from the top of

@arrayname and removes it from the array.

push(@shortarray,'This');
push(@shortarray,'is');
push(@shortarray,'a');
push(@shortarray,'short');
push(@shortarray,'array');
print shift(@shortarray)."\n";
This
print"$#shortarray\n";
3

Arrays 87

print shift(@shortarray)."\n";
is
print"$#shortarray\n";
2
print shift(@shortarray)."\n";
a
print"$#shortarray\n";
1
print shift(@shortarray)."\n";
short
print"$#shortarray\n";
0
print shift(@shortarray)."\n";
array
print"$#shortarray";
-1

pop(@arrayname) This function gets an element of @arrayname from the

bottom and removes it from the array.

push(@shortarray,'This');
push(@shortarray,'is');
push(@shortarray,'a');
push(@shortarray,'short');
push(@shortarray,'array');
print "$#shortarray\n";
4
print pop(@shortarray)."\n";
array
print "$#shortarray\n";
3
print pop(@shortarray)."\n";
short
print "$#shortarray\n";
2
print pop(@shortarray)."\n";
a
print "$#shortarray\n";
1
print pop(@shortarray)."\n";
is
print "$#shortarray\n";
0

Arrays 88

print pop(@shortarray)."\n";
This
print $#shortarray;
-1

6.2.2 Array insertion, truncation and deletion

Array insertion, truncation and deletion are mainly done with the splice function.

splice(@arrayname[,elementnumber[,n[,substituteelement]]]) This function,
when used without the optional arguments in the square brackets, empties
@arrayname

$word ='dog cat mouse';
@wordarray=split(/ /,$word);
print $#wordarray;
2
splice(@wordarray);
print $#wordarray;
-1

Here originally @wordarray has three elements. The splice function removes
everything from it, resulting in -1, meaning empty.

Used with elementnumber, the splice function truncates @arrayname at
elementnumber:

$word ='dog cat mouse';
@wordarray=split(/ /,$word);
print @wordarray;
dogcatmouse
splice(@wordarray,1);
print @wordarray;
dog

In the above example, the splice function truncates @wordarray at
@wordarray[1], leaving only @wordarray[0], which is dog.

The splice function, used with elementnumber, n, removes n elements of
@arrayname starting from elementnumber:

$word ='dog cat mouse';
@wordarray=split(/ /,$word);
splice(@wordarray,0,2);

Arrays 89

print @wordarray;
mouse

Here, the splice function removes two elements from @wordarray, that is, from
$wordarray[0] to $wordarray[1], leaving only $wordarray[2], which is mouse.

The splice function, used with elementnumber, n, substituteelement, replaces
n elements of @arrayname starting from elementnumber with one element
substituteelement.

$word ='dog cat mouse';
@wordarray=split(/ /,$word);
splice(@wordarray,0,2,'duck');
print @wordarray;
duckmouse
print $wordarray[0];
duck
print $wordarray[1];
mouse
print $#wordarray;
1

In the above, the splice function replaces the two elements $wordarray[0] and
$wordarray[1] with duck, which is $wordarray[0] now.

6.2.3 Sorting an array

Perl has a built-in function for sorting strings and numerals either in the ascend-
ing or descending order. The following is the sort function for sorting string
elements of an array in the ascending order:

sort(@arrayname)

Look at the following:

$string='this is a demonstration of the sort function';
@array=split(/ /,$string);
@array=sort(@array);
foreach $word(@array){
print "$word\n";
}

The result is as follows:

Arrays 90

a
demonstration
function
is
of
sort
the
this

The above sorting example can also be written as follows and the result is the
same:

$strings='this is a demonstration of the sort function';
@array=split(/ /,$strings);
foreach $word(sort @array){
print "$word\n";
}

The following is for sorting strings in the descending order:

sort({$b cmp $a}@arrayname)

$strings='this is a demonstration of the sort function';
@array=split(/ /,$strings);
foreach $word(sort{$b cmp $a} @array){
print "$word\n";
}
this
the
sort
of
is
function
demonstration
a

The above two forms of the sort function are for sorting strings and can’t be

use to sort numbers. Look at the following example:

$numeral='1,2,3,4,10,12,21,35';
@array=split(/,/,$numeral);
foreach $number(sort @array){

Arrays 91

print "$number\n";
}
1
10
12
2
21
3
35
4

This is because these numbers were treated as strings and sorted according to
their ASCII code value. To sort numbers, the following form of the sort function
should be used:

sort({$a<=>$b}@arrayname) This is for sorting numbers in ascending
order.

sort({$b<=>$a}@arrayname) This is for sorting numbers in descending

order.

$numeral='1,2,3,4,10,12,21,35';
@array=split(/,/,$numeral);
foreach $number(sort{$a<=>$b} @array){
print "$number\n";
}
1
2
3
4
10
12
21
35

6.2.4 The anonymous variable and the join, map and grep functions

In Perl, there is a special variable $_. It’s known as the anonymous variable
because it can be used to stand for some variables such as the one getting input
from a file handle, the one in the foreach function, and those in some functions
that use a single argument. In such situations, $_ is often omitted. However, the

Arrays 92

use of the anonymous variable often makes a program difficult to understand. So
avoid it whenever possible. The following example uses the anonymous variable:

open(F,"bncwordlist.txt") or die ("File can't be opened.\n");
while(<F>){
print "$_\n";
}
close(F);

In the above example, Perl automatically assigns the contents of the file handle F
to $_ in while(<F>) behind the scenes. In the following example, no overt $_ is
seen.

$string='This shows the use of the anonymous variable';
@array=split(/ /,$string);
foreach (@array){
print;
print "\n";
}
This
shows
the
use
of
the
anonymous
variable

Here, foreach (@array) is actually foreach $_(@array), and the statement print
is actually print $_.

Next, let’s look at the join, map and grep functions.

join(joiningcharacter,@arrayname) This function joins the individual

elements of @arrayname with joiningcharacter. Look at the following examples:

$string='Perl for quantitative linguistics';
@array=split(/ /,$string);
print @array;
Perlforquantitativelinguistics

$string='Perl for quantitative linguistics';
@array=split(/ /,$string);

Arrays 93

print join("-",@array);
Perl-for-quantitative-linguistics

$string='Perl for quantitative linguistics';
@array=split(/ /,$string);
print join("\n",@array);
Perl
for
quantitative
linguistics

map({expression},@arrayname) This function uses expression to

manipulate the elements of @arrayname. The anonymous variable $_ is often
used to stand for each of the elements.

$string='Perl for quantitative linguistics';
@array=split(/ /,$string);
print map ({uc $_."\n"} @array);
PERL
FOR
QUANTITATIVE
LINGUISTICS

In the above example, the expression used in the map function is uc $_."\n" ,
which capitalizes $_ standing for each of the array elements, and puts a line
break after each of the elements.

$string='Perl for quantitative linguistics';
@array=split(/ /,$string);
print map ({substr($_,0,1)." "} @array);
P f q l

The expression in the above map function is substr($_,0,1)." ". It first uses the
substr function to get the first letter of each of the elements of @array, and then
puts a space after each of the elements.

In the following example, the map function is nested within the join function
which separates the result of the map function with /. The expression within the
map function multiplies each of the array elements by 4:

$numeral='1, 2, 3, 4, 5, 6, 7, 8, 9, 10';
@array=split(/,/,$numeral);
print join("/",map({4*$_} @array));

Arrays 94

4/8/12/16/20/24/28/32/36/40

grep({pattern},@arrayname) This function searches for pattern in
@arrayname. In the following, the grep function gets the element of @array
whose length is 12 letters. Here the double equal signs must be used:

$string='Perl for quantitative linguistics';
@array=split(/ /,$string);
print grep({length($_)==12}@array);
quantitative

In the following, the grep function picks the word that has four letters:

$string='Perl for quantitative linguistics';
@array=split(/ /,$string);
print grep({/\b\w{4}\b/} @array);
Perl

6.3 Combining identical array elements and random sampling from an
array

In this section we’ll look at how to combine identical elements of an array and
calculate their frequencies, and how to do random sampling from an array.

Suppose we have the following string Perl is good for Quantitative
Linguistics and Perl is good for general linguistics too and want to put the words
in an array, and then get the occurrences of each of the words. The following
does this:

combineelement1.pl
1. $string='Perl is good for Quantitative Linguistics and Perl is good for

general linguistics too';
2. @temp=split(/ /,lc $string);
3. @array=sort(@temp);
4. $freq=1;
5. for($i=0;$i<$#array+1;$i++){
6. if($array[$i+1]eq $array[$i]){
7. $freq++;
8. }else{
9. $word_freq=$array[$i]."\t".$freq;
10. print "$word_freq\t\n";
11. $freq=1;
12. }

Arrays 95

13. }

The combination of identical elements and the calculation of their frequency are
done by statements 6—7. The result is shown below:

And 1
For 2
General 1
Good 2
Is 2
Linguistics 2
Perl 2
Quantitative 1

However, the result doesn’t look very tidy. Perl has the Text::Tabs module that
can set tab length. We can call it in a program as shown below:

use Text::Tabs;
$tabstop=n;
… …
print FILEHANDLE expand(expression);

Now we’ll set the tab length to 15 using the above and see the result:

combineelement2.pl
1. use Text::Tabs;
2. $tabstop=15;
3. $string='Perl is good for Quantitative Linguistics and Perl is good for

general linguistics too';
4. @temp=split(/ /,lc $string);
5. @array=sort(@temp);
6. $freq=1;
7. for($i=0;$i<$#array+1;$i++){
8. if($array[$i+1]eq $array[$i]){
9. $freq++;
10. }else{
11. $word_freq=$array[$i]."\t".$freq;
12. print W expand("$word_freq\t\n");
13. $freq=1;
14. }
15. }
And 1

Arrays 96

For 2
General 1
Good 2
Is 2
Linguistics 2
Perl 2
Quantitative 1
Too 1

The following expression randomly draws an element from an array:

(@arrayname)[arraylength*rand]

arraylength is the number of elements in @arrayname.

$string='Perl is good for Quantitative Linguistics and Perl is good for
general linguistics too';
@array=split(/ /,lc $string);
$word=(@array)[14*rand];
print "$word";
is

Each time we run the above, an element is randomly picked from @array. Next,
we’ll randomly select 10 words from bncwordlist.txt.

randomsample.pl
1. open(F,"bncwordlist.txt") or die("Can't open file.\n");
2. read(F,$wordlist,900000);
3. open(W,">result.txt") or die ("Can't create file.\n");
4. @wordarray=split(/\n/,$wordlist);
5. $length=$#wordarray+1;
6. for($i=0;$i<10;$i++){
7. $word=(@wordarray)[$length*rand];
8. print(W "$word\n");
9. }
10. close(F);
11. close(W);
Reselection
Costumier
Heroism
Flannan
Shatt

Arrays 97

Nastier
Bestial
Palau
Granada
Bonce

6.4 Applications

In this section we’ll look at four practical programs that use arrays and some of
the functions we’ve learned.

6.4.1 Selecting words from a wordlist

First we’ll use the grep function to select words between length 2 and 5 in letters
from bncwordlist.txt and output these words to a file arranged in the following
format:

WORDS BEGINNING WITH A
Length 2
Worda, wordb, wordc…
… …
The total number of words beginning with A with length 2 is:…
Length3
worda, wordb, wordc…
… …
The total number of words beginning with A with length 3 is:…
… …
WORDS BEGINNING WITH B
… …
Length 5
worda, wordb, wordc…
… …
The total number of words beginning with B with length 5 is:…
… …
grepwords.pl
1. open(F,'bncwordlist.txt') or die("File does not exist.\n");
2. open(W,'>result.txt') or die ("Unable to create file.\n");
3. read(F,$text,900000);
4. @temp=split(/\n/,$text);
5. for($i=65;$i<91;$i++){ #for A to Z
6. $char=chr($i);
7. print W "WORDS BEGINNING WITH $char:\n";

Arrays 98

8. for($j=2;$j<6;$j++){ #for words with length 2—5
9. print W "LENGTH $j\n";
#Note the use of the double equal signs used in the following statement.
10. $words=join(" ",grep({length($_)==$j and /^$char/} @temp))."\n";
11. $wordnumber=($words=~s/ / /g)+1; #counting number of such words
12. print W "$words";
13. print W "Total number of word beginning with $char with length $j is:

$wordnumber\n\n";
14. }
15. print W "\n";
16. }
17. close(F);
18. close(W);

Part of the result is shown below:

WORDS BEGINNING WITH A:
LENGTH 2
A1 A2 A3 A4 A5 A6 A7 A8 A9 Aa Ab Ac Ad Ae Af Ag Ah Ai Aj Ak
Al Ao Ap Ar As At Au Av Aw Ax Ay Az
Total number of word beginning with A with length 2 is: 32

6.4.2 Turning a text into bigrams

In language studies, language teaching and natural language processing, we often
need to separate a text or a corpus into N-grams, i.e., bigrams, trigram and so on.
To turn a text into N-grams, we just pair every word in the text with its
immediate following N−1 words. For example, we can turn Perl is good for
Quantitative Linguistics into the following bigrams:

Perl is
is good
good for
for Quantitative
Quantitative Linguistics.

Now we’ll write a program to turn adventure.txt into a set of bigrams.
Punctuation marks are considered as words so that we can see what words are
often associated with them.

bigram.pl
1. open(F,"adventure.txt")or die("file can't be opened.\n");
2. read(F,$text,150000);
3. $text=~s/([.,`:?!";])+/ $&/g; #note the space preceding $&
4. $text =~s/\n+/ /g;

Arrays 99

5. $text =~tr/ / /s;
6. $text=~s/^ //g; #remove initial space in $text
7. @wordlist=split(/ /,$text);
8. for($i=0;$i<$#wordlist;$i++){
9. for($j=0;$j<2;$j++){
10. $bigram.=" ".$wordlist[$i]; #separate two words with a space
11. $i++;
12. }
13. push(@bigramarray,$bigram);
14. $i-=2;
15. $bigram="";
16. }
17. open(W,">bigram.txt") or die("Can't create file.\n");
18. while($#bigramarray>=0){
19. $getbigram=shift(@bigramarray);
20. print(W "$getbigram\n");
21. }
22. close(F);
23. close(W);

In this program, statements 7—16 get pairs of consecutive array elements to
make bigrams, which are stored in @bigramarray. Note $i-=2 in statement 14,
which decreases $i by 2 because the value of $i has been increased by 2 between
statements 9—12 that make bigrams. Statement 15 empties $bigram to make
room for the next bigram. Statements 17—21 output the bigrams stored in
@bigramarray to bigramtext.txt. Part of the result is shown below:

ALICE'S ADVENTURES
ADVENTURES IN
IN WONDERLAND
WONDERLAND CHAPTER
CHAPTER I
I Down
Down the
the Rabbit-Hole
Rabbit-Hole Alice
Alice was
was beginning
beginning to
to get
get very
very tired

Arrays 100

6.4.3 Turning a text into a list of word types with frequencies

The following program turns adventure.txt into a list of word types with their
frequencies, and computes the total number of word types in it.

wordtype.pl
1. use Text::Tabs;
2. $tabstop=30;
3. open(F,'adventure.txt') or die("File does not exist!\n");
4. open(W,'>wordlist.txt') or die ("Unable to create file!\n");
5. read(F,$text,150000);
6. $text=~tr/[.?,"':;!`*_()\n\-\[\]]/ /s;
7. $text=~s/^ | $//g;
8. @temp=split(/ /,lc $text);
9. $wordnumber=$#temp+1;
10. @words=sort(@temp);
11. $freq=1;
12. for($i=0;$i<$#words+1;$i++){
13. if($words[$i+1]eq $words[$i]){
14. $freq++;
15. }else{
16. $word_freq=$words[$i]."\t".$freq;
17. $typenumber++;
18. print W expand("$word_freq\t\n");
19. $freq=1;
20. }
21. }
22. print (W "____________________\n\n");
23. print (W "The total number of word tokens is: $wordnumber\n");
24. print (W "The total number of word types is: $typenumber\n");
25. close(F);
26. close(W);

The following is part of the result:

… …
yesterday 3
yet 25
you 410
young 5
your 63
yours 3
yourself 10
youth 6

Arrays 101

zealand 1
zigzag 1

The total number of word tokens is: 27285
The total number of word types is: 2570

6.4.4 Computing sentence length distribution

Sentence length refers to the number of words a sentence has. The following
program divides adventure.txt into sentences and then computes the distribution
of sentence length.

sentlength.pl
1. open(F,'adventure.txt') or die("File does not exist.\n");
2. open(R,'>sentence.txt') or die("Can't create file.\n");
3. open(W,'>slength.txt') or die ("Unable to create file.\n");
4. read(F,$text,150000);
5. $text=~s/(Mr|Mrs)\./\1/g; #remove full stop after Mr and Mrs
6. $text=~tr/\././s; #turn two or more consecutive full stops into one
7. $text=~tr/ / /s; # turn two or more consecutive spaces into one
#In statement 9, the punctuation marks such as .?! and their combinations
#with other mark, such as .” etc are regarded as sentence delimiters and are
#replaced by such marks followed by \n, which is also regarded here as a
#sentence delimiter. \n will be used in statement 11 to split $text into indi-
#vidual sentences.
8. $text=~s/\."|\.'|\.`|\.\)|\?"|\?'|\?`|\?\)|\!"|\!'|\!`|\.|\?|\!/$&\n/g;
#The following statement changes line break followed by one or more
#spaces and another line break into a single line break.
9. $text=~s/\n\s*\n/\n/g;
#The following statement puts individual sentences into @sentence.
10. @sentence=split(/\n/,$text);
11. for($i=0;$i<$#sentence+1;$i++){
12. $sentence[$i]=~s/^ | $//g; #remove space at beginning and end of

sentence
#The following statement counts number of words in sentence.
13. $sentlength=($sentence[$i]=~tr/ / /s)+1;
#Sentence length is put in @lengtharray for later use.
14. push(@lengtharray,$sentlength);
15. $sentnumber++;
16. print R "$sentnumber\t$sentlength\t$sentence[$i]\n";
17. $wordnumber+=$sentlength;
18. }

Arrays 102

#In statement 19 @lengtharray_sort contains the sorted sentence length.
19. @lengtharray_sort=sort({$a<=>$b}(@lengtharray));
#Statements 20—29 compute sentence length distribution.
20. $freq=1; #$freq holds the frequency of a sentence length
21. for($i=0;$i<$#lengtharray_sort+1;$i++){
22. if($lengtharray_sort[$i+1]eq $lengtharray_sort[$i]){
23. $freq++;
24. }else{
25. $sentlength_freq=$lengtharray_sort[$i]."\t".$freq;
26. print W "$sentlength_freq\t\n";
27. $freq=1;
28. }
29. }
30. $average=$wordnumber/$sentnumber;
31. print W "The total number of words in text is: $wordnumber\n";
32. print W "The total number of sentences is: $sentnumber\n";
33. print W "The average sentence length is: $average";
34. close(F);
35. close(R);
36. close(W);

The results are stored in two files: sentence.txt and slength.txt. The former stores
individual sentences preceded with sentence number and sentence length, the
latter the distribution of sentence length.

Exercises

1. Assign each of the following words Perl for quantitative linguistics to elem-
ents of an array and then output the contents of these elements using split, push,
shift, pop and unshift.

2. Put all the words in bncwordlist.txt in an array and then output all the words in
descending order.
3. Modify bigram.pl so that it can make trigrams from adventure.txt.

4. Write a program to turn adventure.txt into bigrams and then compute the fre-
quency of each of the bigrams. Set the tab length to 30.

5. Write a program to compute word length (measured in number of letters) dis-
tributions of adventure.txt and the average word length.

7 Hash tables

In Perl there is a very useful data structure called hash tables, also known as
hashes. A hash is like an array in that it has cells that can store different types of
data. These cells are called hash elements. However, unlike the elements of an
array, hash elements are named, not numbered. Hashes are prefixed with the %
sign, e.g., %wordlist, %frequency etc, and the individual hash elements are
prefixed with the dollar sign $, followed by the hash name and the element
names. Hash element names are called keys and are put between a pair of curly
brackets, e.g. $wordlist{apple}, %frequency{bed}, etc, and the contents of a hash
key are called values. An array can be compared to a chest of drawers whose
drawers are numbered 0, 1, 2, …, and we can put different things in these num-
bered drawers and access them by using the drawer numbers. A hash can be seen
as a chest of drawers whose drawers have names instead of numbers.

7.1 Hash input and output

In this section we’ll consider ways of inputting data to and outputting data from a
hash. Data can be inputted either manually, or automatically with the help of an
array or the split function.

7.1.1 Manual input and output

One of the ways to create a hash is by manually assigning values to its elements.
For example, the following creates a hash called profession:

$profession{Peter}="lecturer";
$profession{Sally}="student";
$profession{John}="professor";
$profession{Mary}="secretary";
$profession{Tom}="student";
$profession{Joe}="assistant";

The entire hash is called %profession. The following output the contents of the
individual elements of %profession.

print $profession{Peter};
lecturer
print $profession{Sally};
student
print $profession{John};

Hash tables 104

professor
print $profession{Tom};
student
print $profession{Joe};
assistant

Note how the entire hash is outputted:

print %profession;
JoeassistantSallystudentJohnprofessorMarysecretaryPeterlectu
rerTomstudent

We can use the join function to separate the keys and values:

$profession{Peter}="lecturer";
$profession{Sally}="student";
$profession{Peter}="professor";
$profession{Mary}="secretary";
$profession{Peter}="student";
$profession{Joe}="assistant";
 $folks=join(" ",%profession);
 print $folks;
Joe assistant Sally student John professor Mary secretary
Peter lecturer Tom student

If we create two or more identical keys in a hash, only one will be kept in

the hash, the rest will be automatically discarded, and we don’t know beforehand
which one will be kept.

$profession{Peter}="lecturer";
$profession{Sally}="student";
$profession{Peter}="professor";
$profession{Mary}="secretary";
$profession{Peter}="student";
$profession{Joe}="assistant";
print join(" ",%profession);
Joe assistant Sally student Mary secretary Peter student

Here, only $profession{Peter} and its value student is kept; $profession{Peter}
and its value lecturer was discarded. Note that here the order of the keys with
their values is randomly arranged by Perl.

We can also use the following way to create a hash:

Hash tables 105

%profession=(Peter,lecturer,Sally,student,John,professor,Mary,secretary,T
om, student,Joe, assistant);
print $profession{Tom};
student
print $profession{Mary};
secretary

The following create a hash with a list of words as its keys and word

frequencies as the values.

$frequency{apple}=6;
$frequency{apricot}=1;
$frequency{banana}=2;
$frequency{peach}=12;
$frequency{papaya}=3;
$frequency{grape}=20;
print $frequency{banana};
2
print $frequency{apple};
6
print $frequency{peach};
12

In the above examples, the keys and values are all manually created. If we

want to turn an entire text into a hash, the split function is in order. Note the
white space between the two slashes:

$wordclass="Book Noun Large Adjective The Article Slowly Adverb But
Conjunction";
%hash=split(/ /,$wordclass);
print join(" ",%hash);
But Conjunction Book Noun Slowly Adverb The Article Large
Adjective

When the split function is used to turn a text into a hash, the text is cut into pairs
of words from the beginning to the end, with the first word of a pair serving as
the key, the second the value. If the number of words of a text is odd, then the
last word is the key without a value.

$wordclass="Book Noun Large Adjective The Article Slowly Adverb But";
%hash=split(/ /,$wordclass);
print join(" ",%hash);
Book Noun Large Adjective The Article Slowly Adverb But

Hash tables 106

 As mentioned above, a hash key is unique within a hash; that is, each key
must be different from others. So when using split to turn a text into a hash, some
words may be automatically discarded by Perl to avoid identical keys. Look at
the following:

$wordclass="Book Noun Book Verb Large Adjective The Article Slowly
Adverb But Conjunction";
%hash=split(/ /,$wordclass);
print join(" ",%hash);
But Conjunction Book Verb Slowly Adverb The Article Large
Adjective

The pair Book Noun is discarded because this Book would be the key of Noun,
but the hash has chosen the other Book whose value is Verb.

7.1.2 Hash input and output using arrays and functions

Another way to create a hash is using an array. The following example automat-
ically turns each of the elements of @array into a key of %wordlist, and each of
the keys is given the value of 1:

$array[0]="apple";
$array[1]="banana";
$array[2]="orange";
$array[3]="grape";
foreach $word(@array){
$wordlist{$word}=1;
}
print join(" ",%wordlist);
banana 1 apple 1 orange 1 grape 1

Here, we can also use $wordlist{$word}++ instead of $wordlist{$word}=1:

$array[0]="apple";
$array[1]="banana";
$array[2]="orange";
$array[3]="grape";
foreach $word(@array){
$wordlist{$word}++;
}
print join(" ",%wordlist);
banana 1 apple 1 orange 1 grape 1

Hash tables 107

Look at the following example:

$array[0]="apple";
$array[1]="banana";
$array[2]="orange";
$array[3]="apple";
$array[4]="orange";
$array[5]="grape";
$array[6]="banana";
$array[7]="orange";
$array[8]="orange";
foreach $word(@array){
$wordlist{$word}++;
}
print $wordlist{apple};
2
print $wordlist{grape};
1
print join(" ",%wordlist);
banana 2 apple 2 orange 4 grape 1

Here $wordlist{$word}++ counts the occurrence of each of the keys of
%wordlist and assigns the occurrence to the corresponding key as its value.

To get all the keys of a hash without their values, Perl provides the keys()
function, which is in the following form:

keys(%hashname)

$array[0]="apple";
$array[1]="banana";
$array[2]="orange";
$array[3]="apple";
$array[4]="orange";
$array[5]="grape";
$array[6]="banana";
$array[7]="orange";
$array[8]="orange";
foreach $word(@array){
$wordlist{$word}++;
}
print join(" ",keys(%wordlist));
banana apple orange grape

Hash tables 108

To get the individual keys and their corresponding values, we can use the
foreach() function together with keys():

$array[0]="apple";
$array[1]="banana";
$array[2]="orange";
$array[3]="apple";
$array[4]="orange";
$array[5]="grape";
$array[6]="banana";
$array[7]="orange";
$array[8]="orange";
foreach $word(@array){
$wordlist{$word}++;
}
foreach $word(keys(%wordlist)){
print "$word\t$wordlist{$word}\n";
}
banana 2
apple 2
orange 4

In the above, foreach $word(keys(%wordlist)) assigns the keys of %wordlist one
by one to $word, while print "$word\t$wordlist{$word}\n" prints out the keys
and their corresponding values, separated with a line break.

We can also sort the keys:
… …
foreach $word(sort(keys(%wordlist))){
print "$word\t$wordlist{$word}\n";
}
apple 2
banana 2
grape 1
orange 4

The reverse() function we learned in the last chapter can also be used to turn

values into keys and keys into values:
 … …
%wordlist=reverse(%wordlist);
foreach $word(keys(%wordlist)){
print "$word\t$wordlist{$word}\n";
}
4 orange

Hash tables 109

1 grape
2 banana

Note 2 apple are missing because after reversion, 2 became a key, and there is
another key that uses 2 as its name, so 2 apple were discarded.

Using a hash and the keys function, it would be very easy to turn a text into a
list of individual word types with their frequencies. The following short program
does this for adventure.txt:

wordtype_hash.pl
1. use Text::Tabs;
2. $tabstop=30;
3. open(F,'adventure.txt') or die("File does not exist.\n");
4. open(W,'>wordlist.txt') or die ("Unable to create file.\n");
5. read(F,$text,150000);
#The following statement replaces non-alphanumeric characters with
#spaces. Note the space after -; this ensures only one space on either side of
#a word.
6. $text=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
7. $text=~s/^ | $//g;
8. @temp=split(/ /,lc $text);
9. foreach $word(@temp){
10. $wordnumber++; #count total number of word tokens
11. $wordtype{$word}++; # get word frequency
12. }
13. foreach $type(sort(keys(%wordtype))){
14. $typenumber++; #count number of word types
15. print W expand"$type\t$wordtype{$type}\n";
16. }
17. print (W "____________________\n\n");
18. print (W "The total number of word tokens is: $wordnumber\n");
19. print (W "The total number of word types is: $typenumber\n");
20. close(F);
21. close(W);

In this program, statements 9—12 turn the array elements into keys of a hash,
with the frequencies as the values. Statement 13 sorts the keys and assigns them
one by one to $type. Statement 15 prints out the keys, followed by a 30-space tab,
and the frequencies. The following is part of the result:

you 410
young 5
your 63
yours 3

Hash tables 110

yourself 10
youth 6
zealand 1
zigzag 1

The total number of word tokens is: 27285
The total number of word types is: 2570

7.1.3 The use of values(), each(), exist() and delete()

values(%hashname) This function gets the value of a hash key. The
following prints out the value of each of the elements of a hash:

$wordlist{apple}=2;
$wordlist{grape}=1;
$wordlist{orange}=4;
print join("\n",values(%wordlist));
2
4
1

The values() function can also be used with foreach() in the following form:

foreach $variable(values(%hashname)){
statements to be executed
}

$wordlist{apple}=2;
$wordlist{grape}=1;
$wordlist{orange}=4;
foreach $freq(values(%wordlist)){
print "$freq\n";
}
2
4
1

each(%hashname) This function gets one of the keys of a hash and its value.

$wordlist{apple}=2;
$wordlist{grape}=1;

Hash tables 111

$wordlist{orange}=4;
print join(" ",each(%wordlist));
apple 2

We can use each() to assign a key and its value respectively to two variables:

$wordlist{apple}=2;
$wordlist{grape}=1;
$wordlist{orange}=4;
($word,$freq)=each(%wordlist);
print "$word\t$freq\n";
apple 2

The following outputs every key and its value of %wordlist:

$wordlist{apple}=2;
$wordlist{grape}=1;
$wordlist{orange}=4;
while(($word,$freq)=each(%wordlist)){
print "$word\t$freq\n";
}
apple 2
orange 4
grape 1

exists($hashname{hashelement}) This function checks whether a specified

element exists in a hash.

$wordlist{apple}=2;
$wordlist{grape}=1;
$wordlist{orange}=4;
if(exists($wordlist{grape})){
print "The element exists; it occurred $wordlist{grape} time(s).";
}
The element exists; it occurred 1 time(s).

delete($hashname{hashelement}) This function deletes the specified

element of a hash.

$wordlist{apple}=2;
$wordlist{grape}=1;
$wordlist{orange}=4;
delete($wordlist{apple});

Hash tables 112

foreach $word(keys(%wordlist)){
print "$word\t$wordlist{$word}\n";
}
orange 4
grape 1

To empty a hash, use the following expression:

%hashname=()

$wordlist{apple}=2;
$wordlist{grape}=1;
$wordlist{orange}=4;
%wordlist=();
print %wordlist;

Nothing is printed out because %wordlist is now empty.

7. 2 Hash operations

In this section we’ll look at how to convert hash elements into an array and the
manipulation of hash elements within one or more hashes.

7.2.1 Converting hash elements into an array

In wordtype_hash.pl we saw how to put array elements into a hash. This process
can be reversed, that is, a hash can be turned into an array. One of the applic-
ations of putting a hash into an array is for sorting the values of a hash.

hash_to_array1.pl
1. $word{book}="N";
2. $word{hot}="Adj";
3. $word{desk}="N";
4. $word{read}="V";
5. $word{good}="Adj";
6. $word{at}="Prep";
7. while(($word,$pos)=each(%word)){
8. push(@word,"$pos\t$word");
9. }
10. foreach $word(sort @word){
11. print "$word\n";

Hash tables 113

12. }

This program puts six words and their respective parts of speech in a hash. The
hash is then converted into an array by statement 8, which combines $pos, a tab,
and $word as an array element and is then pushed into an array called @word.
Statements 10—11 print out the array elements sorted in ascending order. The
result is as follows:

Adj good
Adj hot
N book
N desk
Prep at
V read

The above method can be used to output a wordlist stored in a hash with the
frequencies sorted in descending order.

hash_to_array2.pl
1. $word{book}=20;
2. $word{hot}=45;
3. $word{desk}=12;
4. $word{read}=24;
5. $word{good}=67;
6. $word{at}=80;
7. while(($word,$freq)=each(%word)){
8. push(@word,"$freq\t$word");
9. }
10. foreach $freq_word(sort{$b<=>$a} @word){
11. print "$freq_word\n";
12. }
80 at
67 good
45 hot
24 read
20 book
12 desk

7.2.2 Combining two or more hashes together

Quite often, we may need to combine two or more hashes into one. The follow-
ing expression is for doing do this:

%newhash=(%hash1,%hash2,%hash3…%hashn)

Hash tables 114

$wordset1{cow}=2;
$wordset1{horse}=4;
$wordset1{mule}=3;
$wordset2{dog}=4;
$wordset2{cat}=5;
%combineset=(%wordset1,%wordset2);
foreach $word(keys %combineset){
print "$word\t$combineset{$word}\n";
}
cat 5
cow 2
dog 4
mule 3
horse 4

The combination of hashes, together with other functions we’ve learned, is used
in the following program that counts the occurrences of go.

countgo.pl
1. $go="goes go going go went go gone go";
2. $text="I am going to school she went to school he goes to school they

have gone to school we go to school Peter and Sally go to school";
3. @wordarray=split(/ /,$text);
4. foreach $word(@wordarray){
5. $wordhash{$word}++;
6. }
#In the following, the different word forms of go are put in the hash %go,
#with go as their value.
7. %go=split(/ /,$go);
#In statements 8—10 the different word forms of go are taken one by one
#from %go and assigned to $wordform, and are then checked for their
#existence in %wordhash. If a word form of go exists in %wordhash, its
#lemma go is assigned to $lemma.
8. foreach $wordform(keys %go){
9. if(exists($wordhash{$wordform})){
10. $lemma=$go{$wordform}; #this assigns go to $lemma
#The following creates a new hash %go_freq whose function is to count the
#occurrences of go and its variants.
11. $go_freq{$lemma}+=$wordhash{$wordform};
#In the following statement, after the frequency of a word form of go is
#added to the frequency of go, the word form is deleted from %wordhash.
12. delete($wordhash{$wordform});
13. }

Hash tables 115

#In statements 14—16 , if go itself exists in %wordhash, its frequency is
#added to that in %go_freq, and this go is then deleted from %wordhash. In
#the end, all the different word forms of go and go itself are deleted from
#%wordhash, leaving only other words.
14. if(exists($wordhash{$lemma})){
15. $go_freq{$lemma}+=$wordhash{$lemma};
16. delete($wordhash{$lemma});
17. }
18. }
#Statement 19 combines %wordhash and %go_freq into a new hash
#%wordlist.
19. %wordlist=(%wordhash,%go_freq);
#The following output the sorted %wordlist.
20. foreach $word(sort keys %wordlist){
21. print "$word\t$wordlist{$word}\n";
22. }

The result is shown below:

I 1
Peter 1
Sally 1
am 1
and 1
go 6
have 1
he 1
school 6
she 1
they 1
to 6
we 1

7.2.3 Hash comparisons

Apart from combining hashes together, we can also compare two hashes, picking
out identical keys and keys unique to each of the hashes compared. The follow-
ing program deletes the words that both hashes have and send them to a new hash,
keeping their original frequencies; so the remaining words in each of the hashes
are all unique ones.

comparehash.pl
1. $wordlist1="apple 2 banana 2 apricot 7 grape 1 orange 4 pear 1 plum

Hash tables 116

12";
2. $wordlist2="apricot 2 banana 5 grape 3 papaya 4 peach 8 plum 1";
3. %hash1=split(/ /,$wordlist1);
4. %hash2=split(/ /,$wordlist2);
#In statements 5—10, words are taken one by one from %hash2 and
#checked in %hash1 for their existence. If they exist, they are deleted from
#%hash1 and %hash2, and put in %hash3, with their respective frequencies
#separated with :.%hash3 stores words that both %hash1 and %hash2 have.
5. foreach $word(keys %hash2){
6. if(exists($hash1{$word})){
7. $hash3{$word}=$hash1{$word}.":".$hash2{$word};
8. delete($hash1{$word});
9. delete($hash2{$word});
10. }
11. }
#Statements 12—19 respectively output words unique to %hash1 and
#%hash2.
12. print "Words unique to wordlist1: \n";
13. foreach $word(sort keys %hash1){
14. print "$word\t$hash1{$word}\n";
15. }
16. print "Words unique to wordlist2: \n";
17. foreach $word(sort keys %hash2){
18. print "$word\t$hash2{$word}\n";
19. }
#The following output words shared by %hash1 and %hash2.
20. print "Words occurring in both: \n";
21. foreach $word(sort keys %hash3){
22. print "$word\t$hash3{$word}\n";
23. }

The following are the results:

Words unique to wordlist1:
apple 2
orange 4
pear 1
Words unique to wordlist2:
papaya 4
peach 8
Words occurring in both:
apricot 7:2
banana 2:5

Hash tables 117

grape 1:3
plum 12:1

7.2.4 Computing value frequencies

Suppose we have the following short wordlist:
apple 2
banana 2
apricot 7
grape 1
orange 4
pear 1
plum 12
peach 1

and we want to compute the frequency of frequencies, i.e., how many times
frequency 1 occurs, how many times frequency 2 occurs, etc. We can turn this
wordlist into a hash, with the words as its keys and the frequencies as its values.
Then we can use the values function to get these values and compute their
frequencies, i.e., the frequency of the frequency classes.

countvalue.pl
1. $wordlist="apple 2 banana 2 apricot 7 grape 1 orange 4 pear 1 plum 12

peach 1";
2. %wordhash=split(/ /,$wordlist);
3. foreach $wordfreq(values (%wordhash)){
4. $wordfreqhash{$wordfreq}++;
5. }
6. foreach $freqclass(sort({$a<=>$b}keys %wordfreqhash)){
7. print"$freqclass\t$wordfreqhash{$frequeclass}\n";
8. }

In the above, statement 3 gets the values, i.e., word frequencies, of %wordhash
and assigns them one by one to $wordfreq. Statement 4 puts $wordfreq in
%wordfreqhash, and computes their occurrences. Now the keys of
%wordfreqhash are actually the word frequency classes, and the values the
frequencies of such classes. Statements 6—8 get the sorted frequency classes and
the frequencies of these classes. The result is shown below. The first column is
the frequency class, the second its frequency. It’s a miniature frequency spectrum.

1 3
2 2
4 1
7 1

Hash tables 118

12 1

7.3 Applications

In this section, we’ll look at some practical programs that use hashes. These
programs are very useful in collecting data for linguistic research and natural
language processing.

7.3.1 Computing per word entropy of English

Entropy is a concept widely used in information processing, quantitative
linguistics, natural language processing, etc. It’s computed with the following:

)(log)(2 xpxpH
Xx
∑
∈

−=

where H is entropy, p(x) the probability of a variable x. If x stands for a word,
then p(x) is the probability of the occurrence of x, obtained with the frequency of
x divided by the size of the text where x is in. bncwordlist2.txt contains the entire
vocabulary of a 10,000,000-word sample from BNC (the British National Cor-
pus). In the wordlist, words are listed in the first column and their frequencies in
the second column, with white spaces between the two columns. The following
program computes the per word entropy of the English language based on
bncwordlist2.txt.

entropy.pl
1. open(F,'bncwordlist2.txt') or die("File does not exist!\n");
2. read(F,$wordlist,3600000);
#The following statement converts \n and consecutive spaces into one
#space
3. $wordlist=~tr/ |\n/ /s;
4. %wordlist=split(/ /,$wordlist);
#Statements 5—7 compute the size of the sample from which the wordlist
#was made by adding the frequency of each word together.
5. foreach $freq(values %wordlist){
6. $cumufreq+=$freq;
7. }
8. foreach $word(keys %wordlist){
9. $probability=$wordlist{$word}/$cumufreq;
10. $logprob=log($probability)/log(2);
#In the following statement, %entropy takes $word as its keys and

Hash tables 119

#probabil#ity*log probability of $word as its values.
11. $entropy{$word}=$probability*$logprob;
12. }
13. foreach $value(values %entropy){
14. $cumuvalue+=$value;
15. }
16. $entropy=-$cumuvalue;
17. print $entropy;
18. close(F);

Statement 9 computes p(x) and statement 10 log2p(x). Statement 14 gets
Σp(x)log2p(x). The result is 10.0112544220046.

7.3.2 Making a word frequency spectrum

A word frequency spectrum is the distribution of word frequencies, i.e., the
occurrences of frequency 1, frequency 2, frequency 3 etc. It’s also called
frequency of frequencies. The following program makes the frequency spectrum
for adventure.txt. It’s similar to countvalue.pl in 7.2.4.

spectrum.pl
1. open(F,"adventure.txt") or die("Can't open file.\n");
2. read(F,$text,150000);
3. open(W,">spectrum.txt") or die("Can't create file.\n");
4. use Text::Tabs;
5. $tabstop=30;
6. $text=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
7. $text=~s/^ | $//g; #remove initial and end spaces of $text
8. @temp=split(/ /,lc $text);
9. foreach $word(@temp){
10. $wordlist{$word}++;
11. }
12. foreach $freq(values %wordlist){
13. $spectrum{$freq}++;
14. }
15. foreach $freqclass(sort({$a<=>$b}keys %spectrum)){
16. print(W expand "$freqclass\t$spectrum{$freqclass}\n");
17. }
18. close(F);
19. close(W);

The logic of this program is the same as countvalue.pl in 7.2.4. Part of the result
is shown below:

Hash tables 120

1 1118
2 392
3 229
4 144
5 91
6 63
7 61
8 55
9 33
10 39
… …
1635 1

In the above, 1 1118, 2 392, 1635 1 mean there are 1118 words occurring
once, 392 words occurring twice, one word occurring 1635 times, which is the.

7.3.3 Lemmatization

Lemmatization is the process of turning word forms into its base form, e.g.,
turning words such as goes, going, went, gone into go. The base form of a set of
words with the same major part-of-speech and the same word-sense is called a
lemma. One of the most well-known lemmatization algorithms is the Porter
stemmer. The following program lemmatizes adventure.txt using a dictionary
lemmadic.txt that contains 47,726 word forms and their corresponding lemmas.
The word forms and their lemmas are arranged in the follow form:

Accelerated Accelerate
Accelerates Accelerate
Accelerating Accelerate

The basic logic of the program is the same as countgo.pl in 7.2.2. The program
turns adventjure.txt into a hash %tempwordlist and lemmadic.txt into another
hash %lemmadic, in which the word forms are the keys and the lemmas the
values. The keys of %lemmadic are searched one at a time in %tempwordlist; if a
match is hit, the word form is deleted from %tempwordlist and its corresponding
lemma is put to %lemmatemp together with the word form’s frequency. If the
lemma already exists in %lemmatemp, only the frequency is added. If instead of
the word form, its lemma exists in %tempwordlist, it’s also deleted and put to
%lemmadic, with its frequency added.

lemmatizer.pl
1. open(F,"adventure.txt")or die("File can't be opened.\n");
2. read(F,$text,150000);
3. open(W,">wordlist.txt") or die("Can't create file.\n");

Hash tables 121

4. $text=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
5. $text=~s/^ | $//g; #remove initial and end spaces
6. @tempwordlist=split(/ /,lc $text);
7. foreach $word(@tempwordlist){
8. $tokennumber++;
9. $tempwordlist{$word}++;
10. }
11. open(G,"lemmadic.txt")or die("File does not exist.\n");
12. read(G,$dicinput,900000);
13. %lemmadic=split(/[\n]/,lc $dicinput); #note the space before \n
14. foreach $wordform(keys %lemmadic){
15. if(exists($tempwordlist{$wordform})){
16. $lemma=$lemmadic{$wordform};
17. $lemmatemp{$lemma}+=$tempwordlist{$wordform};
18. delete($tempwordlist{$wordform});
19. if(exists($tempwordlist{$lemma})){
20. $lemmatemp{$lemma}+=$tempwordlist{$lemma};
21. delete($tempwordlist{$lemma});
22. }
23. }
24. }
25. %wordlist=(%tempwordlist,%lemmatemp);
26. foreach $word(sort(keys(%wordlist))){
27. $vocsize++; #compute vocabulary size
28. use Text::Tabs;
29. $tabstop=30;
30. print (W expand("$word\t$wordlist{$word}\n"));
31. }
32. print(W "__________________________________\n");
33. print(W "Total number of word tokens: $tokennumber\n");
34. print(W "Vocabulary size: $vocsize\n");
35. close(F);
36. close(G);
37. close(W);

Part of the result is as follows:

a 687
abe 1
able 1
about 93
above 3
absence 1
absurd 2

Hash tables 122

acceptance 1
accident 2
accidentally 1
account 3
accusation 1
accustom 1
ache 1
across 5
… …

Total number of word tokens: 27285
Vocabulary size: 1939

7.3.4 Lexical comparison between two texts

In 7.2.3 we looked at how to make lexical comparisons between two hashes.
Now we’ll write a practical program that can make lexical comparisons between
two large wordlists. comparewords.pl makes lexical comparisons between two
lemmatized wordlists wordlista.txt and wordlistl.txt, made respectively from
adventure.txt and lookingglass.txt. It picks out words shared between the two
wordlists and those unique to wordlista.txt and wordlistl.txt. Although the
program has 42 statements, the logic is simple and is the same as that of
comparehash.pl in 7.2.3.

comparewords.pl
1. open(F,"wordlista.txt")or die("File can't be opened.\n");
2. read(F,$wordlista,70000);
3. open(G,">aliceword.txt") or die("Can't create file.\n");
4. open(H,"wordlistl.txt") or die("File can't be opened.\n");
5. read(H,$wordlistb,70000);
6. open(I,">lglassword.txt") or die("Can't create file.\n");
7. open(J,">sharedwords.txt") or die("Can't create file.\n");
8. use Text::Tabs;
9. $tabstop=20;
10. $wordlista=~tr/ / /s;
11. $wordlistb=~tr/ / /s;
12. %alice=split(/ |\n/,$wordlista);
13. %lglass=split(/ |\n/,$wordlistb);
14. foreach $word(keys %alice){
15. if(exists($lglass{$word})){
16. $sharedwords{$word}=$alice{$word}.":".$lglass{$word};

Hash tables 123

17. delete($alice{$word});
18. delete($lglass{$word});
19. }
20. }
21. print G "Words unique to Alice in Wonderland: \n";
22. foreach $word(sort keys %alice){
23. $wordnumber1++;
24. print G expand "$word\t$alice{$word}\n";
25. }
26. print G "The number of words unique to Alice in Wonderland is:

$wordnumber1\n";
27. print I "Words unique to Through the Looking_glass: \n";
28. foreach $word(sort keys %lglass){
29. $wordnumber2++;
30. print I expand "$word\t$lglass{$word}\n";
31. }
32. print I "The number of words unique to Through the Looking_glass is:

$wordnumber2\n";
33. print J "Words occurring in both: \n";
34. foreach $word(sort keys %sharedwords){

$wordnumber3++;
35. print J expand "$word\t$sharedwords{$word}\n";
36. }
37. print J "The number of shared words is: $wordnumber3\n";
38. close(F);
39. close(G);
40. close(H);
41. close(I);
42. close(J);

The program can be divided into four sections. The first section is from the start
to statement 9, in which wordlists are opened and output files created. Tab length
is also set in this section. The second section is between statements 10—13,
which turn the two wordlists into hashes. The third section is between statements
14—20, where lexical comparisons are made. The last section is from statement
21 to the end, which outputs the results to the files created in the first section.
Part of the results is shown below:

Words unique to Alice in Wonderland:
abide 1
absence 1
absurd 2
acceptance 1
accident 2

Hash tables 124

accidentally 1
… …
Words unique to Through the Looking_glass:
1 2
364 1
365 1
accent 1
acre 1
… …
Words occurring in both:
a 687:718
able 1:6
about 93:60
above 3:2
account 3:1
across 5:8
actually 1:2
add 24:20
… …

Exercises

1. Put the following two short wordlists into two hashes, %hash1 and %hash2,
with the words as the keys and frequency as values.
Wordlist 1: people 6 book 14 read 40 linguistics 13 Perl 12 journal 14 student 6

program 20
Wordlist 2: journal 12 student 12 teacher 6 Perl 10 program 18 book 5 do 40

computer 20
Then do the following:

1) Compare the two hashes, outputting the words occurring in both hashes
while keeping their respective frequencies.

2) Combine the two hashes and output the words with frequency sorted in
descending order.

3) Reverse the combined hash, turning keys as values and values as keys.
Output the hash thus combined with the new keys sorted in ascending
order. Make sure nothing is discarded.

4) Make a sorted frequency spectrum for the combined hash.

2. The following short text has different forms of be. Put the text in a hash,
lemmatize the variants of be and compute its frequency.

Hash tables 125

The word be has the following word forms: am, is, are, was,
were, and being.

3. Write a program using a hash to make a wordlist for adventure.txt, with words
grouped according to their length in letters, and compute the total number of
word types and average word length in letters. The result should be arranged as
shown below:

 2-letter words:
ah,5; am,16; an,57; as,263; at,211…
The total number of words with length 2 is: 41
 3-letter words:
 act,1; ada,1; age,4; ago,2; air,15;…
The total number of words with length 3 is: 171
… …
THE TOTAL NUMBER OF WORD TYPE IS: 2570
THE AVERAGE WORD LENGTH IS: 3.93806120579073

4. In Chapter 1 we mentioned briefly about Yule’s K, which is computed with the
following:

2

2),(
10000

N

NNmVm
K m∑ −
= ,

where m is the word frequency class, V(m,N) the number of words with fre-
quency m, and N the number of words in the text in question. Now write a
program to compute Yule’s K for adventure.txt.

8 Subroutines and modules

A subroutine is a sub-program within a program, which can be called wherever
it’s needed to perform certain functions in the program; while a module is a
stand-alone program that can be called by other programs to perform certain
functions. Suppose we want to write a program to turn four different texts into
four lemmatized wordlists, instead of writing bulky blocks of statements for
making lemmatized wordlists four times, we can put just one block of statements
for making a lemmatized wordlist in a sub-program and call it from the main
program. We can also turn it into a stand-alone program and call it whenever it’s
needed by other programs. Subroutines and modules can make a program more
concise, tidy and readable.

8.1 Subroutines

Subroutines are sometimes called user-defined functions. Some people say that
there is a difference between a subroutine and a user-fined function; namely, a
user-defined function returns values, while a subroutine doesn't. However, we
don't make such distinctions. In this section, we’ll look at the subroutine’s basic
structure and the different ways to pass information between a subroutine and the
main program.

8.1.1 The basic structure

A subroutine has the following basic structure:

sub subroutinename{
statements
return(resultofsubroutine)
}

The function of return(resultofsubroutine) is that, upon the completion of the
subroutine, it tells the program to return with the result to the place where the
subroutine is called. This expression can be omitted when it’s not necessary to
pass the result back to the main program, or when the main program can get the
result by default. We’ll discuss the use of return() in detail later.

A subroutine can be placed anywhere within a program. In this book, it’s
placed at the end of a program. The following expression calls a subroutine in the
main program:

subroutinename($variable1, $variable2,$variable3…)

Subroutines and modules 127

Here, $variable1, $variable2, $variable3 etc are called parameters of a
subroutine.

Look at the following program that uses a short subroutine. The subroutine
turns the words of a text into the upper case.

casechange_sub.pl
1. $sentence="This is a demonstration of the use of subroutines.";
2. uppercase($sentence);
3. $sentence="Its use can make a program more concise and readable.";
4. uppercase($sentence);
5. sub uppercase{
6. print uc "$sentence\n";
7. print "Case change completed.\n";
8. }

Statements 1—4 constitute the main program. The subroutine uppercase is
between statements 5—8. Statements 2 and 4 call it respectively and pass the
parameter $sentence to the subroutine. Note the omission of return ().

8.1.2 Parameters of subroutines

The subroutine in casechange_sub.pl is not of much use since the parameter is
passed directly to the subroutine, and the subroutine can accept only one and the
same parameter, which can’t change its name in the subroutine. To write more
versatile and powerful subroutines, we need to know the other way in which
parameters are passed to the subroutines.

When a subroutine is called, the parameters are automatically stored in an
array called @_, also known as the anonymous array; the first element stores the
first parameter, the second element the second parameter, etc. This way, it’s
extremely easy to retrieve the parameters in the subroutine, and the names of the
retrieved parameters don’t have to be the same with the ones in the main program.
Look at the following example:

parameter_sub1.pl
1. $word1="Perl";
2. $word2="program";
3. $word3="parameter";
4. $word4="subroutine";
5. parameters($word1,$word2,$word3,$word4);
6. sub parameters{
7. print join("\n",@_);
8. }

Subroutines and modules 128

perl
program
parameter
subroutine

parameter_sub2.pl
1. $word1="Perl";
2. $word2="program";
3. $word3="parameter";
4. $word4="subroutine";
5. parameters($word1,$word2,$word3,$word4);
6. sub parameters{
7. for ($i=1;$i<5;$i++){
8. $string=shift();
9. print "$string\t";
10. }
11. }

The subroutine loops between statements 7—10 four times, and each time shift()
gets an element, i.e., a parameter, from the anonymous array @_; the parameter
is assigned to $string, which is printed by statement 9. The result is shown below:

Perl program parameter subroutine
 Apart from variables, parameters can also be arrays and hashes. Look at the
following two examples:

array_sub.pl
1. $sentence="Subroutines and user-defined functions: what is the

difference?";
2. @array=split(/ /,lc $sentence);
3. printarray(@array);
4. sub printarray{
5. @subarray=@_;
6. foreach $word(sort @subarray){
7. print "$word\n";
8. }
9. }

hash_sub.pl
1. $sentence="Subroutines and user-defined functions: what is the

difference?";
2. %hash=split(/ /,lc $sentence);
3. printhash(%hash);

Subroutines and modules 129

4. sub printhash{
5. %subhash=@_;
6. foreach $word(sort keys %subhash){
7. print "$word\t$subhash{$word}\n";
8. }
9. }

8.1.3 The use of return() in subroutines

In the above examples, no values were passed back from the subroutines to the
main programs, so none of the subroutines used return(). Quite often we need to
pass back the result of a subroutine to the main program. Without return(), the
value of the last variable of a subroutine is passed back to the main program by
default. In getlength_sub.pl, the subroutine computes two types of text length:
length in number of characters, including white spaces, and length in number of
words. The subroutine without return() passes back the length in number of
characters since it’s the value of the last variable of the subroutine:

getlength_sub1.pl
1. $sentence="Subroutines and user-defined functions: what is the

difference?";
2. $sentlength=getlength($sentence);
3. print $sentlength;
4. sub getlength{
5. $string=shift();
6. $wordlength=($string=~s/ / /g)+1;
7. $characterlength=length($string);
8. }
 63

If we need the text length in number of words, then return() must be used:

getlength_sub2.pl
1. $sentence="Subroutines and user-defined functions: what is the

difference?";
2. $sentlength=getlength($sentence);
3. print $sentlength;
4. sub getlength{
5. $string=shift();
6. $wordlength=($string=~s/ / /g)+1;
7. $characterlength=length($string);
8. return($wordlength);

Subroutines and modules 130

9. }
8

In the following program, the subroutine adds, subtracts, multiplies and

divides 20 by 4, and returns the results to the main program:

mathoperation.pl
1. $number=20;
2. ($a,$b,$c,$d,$e)=compute($number);
3. print "$a\n$b\n$c\n$d";
4. sub compute{
5. $num=shift();
6. $add=$num+4;
7. $subtract=$num-4;
8. $divide=$num/4;
9. $multiply=$num*4;
10. return ($add,$subtract,$divide,$multiply);
11. }
24
16
5
80

8.1.4 Localization of variables in subroutines

The variables used in all the subroutines so far are global; that is, their values are
recognized both in the subroutines and the main program. In the following
example, the value of the variable $message is changed in the subroutine, and the
new value is recognized in the main program.

global.pl
1. $sentence="Subroutines and user-defined functions: what is the

difference?";
2. $message="Text is changed into upper case.";
3. $newtext=uppercase($sentence);
4. print "$newtext\n";
5. print $message;
6. sub uppercase{
7. $strings=uc shift();
8. $message="Task completed successfully.";
9. return($strings);
10. }

Subroutines and modules 131

SUBROUTINES AND USER-DEFINED FUNCTIONS: WHAT IS THE
DIFFERENCE?
Task completed successfully.

In a long program with many variables and several subroutines, the use of global
variables in subroutines can result in serous errors, such as inadvertently chang-
ing the values of some variables in the main program or in other subroutines. To
avoid such situation from occurring, we can localize the variables used in a sub-
routine by the use of my the first time the variables are used. Variables thus
treated is recognized only in its own subroutine, not in the main program or other
subroutines.

local_my.pl
1. $sentence="Subroutines and user-defined functions: what is the

difference?";
2. $message="Text is changed into upper case.";
3. $newtext=uppercase($sentence);
4. print "$newtext\n";
5. print $message;
6. sub uppercase{
7. $strings=uc shift();
8. my $message="Task completed successfully.";
9. print "$message\n";
10. return($strings);
11. }
Task completed successfully.
SUBROUTINES AND USER-DEFINED FUNCTIONS: WHAT IS THE
DIFFERENCE?
Text is changed into upper case.

Because of the use of my in statement 8, although $message is given a new value
in the subroutine, it’s effective only within the subroutine; outside the subroutine
this value is not recognized. my can also be used to localize arrays and hashes in
subroutines.

8.2 Modules

Subroutines can be called anywhere within a program, but it can’t be used out-
side the program. To do this, we need modules. A module is a stand-alone sub-
routine that can be called by other programs. There are two types of modules, the

Subroutines and modules 132

common module and the exporter module. All Perl modules have the file
extension pm.

The common module has the following structure:

package modulename
sub subroutinename{
statements
return(results);
}
1;

As with subroutines, return() can be omitted depending on the situation. The
number 1 tells the calling program a true value is returned to it. It can be any
other number; without this number an error message would result and the
program would stop.

To call a module, the calling program should put the following expressions
where the module is needed:

use modulename;
modulename::subroutinename($variables);

Here $variables are the target to be handled by a module; it can be scalar
variables, arrays or hashes. Now we’ll write a program that turns a short text into
a wordlist with frequencies. This program calls two modules: tokenizer.pm and
printer.pm, the first one turning the text into individual words stored in an array,
and the second printing out the wordlist.

wordlist_module.pl
1. use tokenizer;
2. use printer;
3. $text="Alice was beginning to get very tired of sitting by her sister on

the bank and of having nothing to do";
4. @wordtoken=tokenizer::tokenize($text);
5. foreach $word(@wordtoken){
6. @wordtype{$word}++;
7. }
8. printer::printwords(%wordtype);

Statement 4 calls tokenizer.pm to tokenize $text and put the result in @wordtoken.
Statement 8 calls the module printer.pm to print out the wordlist. The following
are the two modules.

tokenizer.pm
1. package tokenizer;

Subroutines and modules 133

2. sub tokenize{
3. my($text,@temp);
4. $text=shift();
5. @temp=split(/ /,lc $text);
6. }
7. 1;

Note the localization of $text and @temp in statement 3.

printer.pm
1. package printer;
2. sub printwords{
3. my($word,%wordlist);
4. %wordlist=@_;
5. foreach $word(sort keys %wordlist){
6. print "$wordlist{$word}\t$word\n";
7. }
8. }
9. 1;

The result is shown below:

1 alice
1 and
1 bank
1 beginning
1 by
1 do
1 get
1 having
1 her
1 nothing
2 of
1 on
1 sister
1 sitting
1 the
1 tired
2 to
1 very
1 was

Subroutines and modules 134

The two modules can also be called by other programs that need to turn a
text into words stored in an array or to print out a wordlist stored in a hash. This
really saves a lot of time and labour. However, it’s a bit inconvenient that each
time we call a module of this type, we have to use expressions like
tokenizer::tokenize($text), printer::printwords(%wordtype) etc. Perl’s exporter
modules reduce the labour by using only the part after the two colons. The
structure of an exporter module is as follows:

package modulename;
use Exporter;
@ISA=("Exporter");
@EXPORT=("modulename");
sub subroutinename{
statements
return(results);
}
1;

Here return(results) can be omitted. The following are expressions used in the
calling program:

use modulename;
subroutinename($variables);

Here $variables can be scalar variables, arrays or hashes.

Now we’ll test the use of an exporter module. The following is a program
turning a sentence into a short wordlist with frequencies using an exporter
module.

test_exporter.pl
1. $text="Alice was beginning to get very tired of sitting by her sister on

the bank and of having nothing to do";
2. use test_exporter;
3. getword($text);

Statement 3 specifies the use of the module wordlistmodule, and statement 4 calls
the module by its subroutine name makewordlist. The following is the exporter
module called by wordlist.pl:

test_exporter.pm
1. package test_exporter;
2. use Exporter;
3. @ISA=("Exporter");
4. @EXPORT=("getword");

Subroutines and modules 135

5. sub getword{
6. my($text,$word,$wordnumber,$wordtype,$type,@temp,%wordtype);
7. $text=shift();
8. @temp=split(/ /,lc $text);
9. foreach $word(@temp){
10. $wordnumber++;
11. $wordtype{$word}++;
12. }
13. foreach $type(sort(keys(%wordtype))){
14. print "$wordtype{$type}\t$type\n";
15. }
16. }
17. 1;

8.3 References

A reference is a variable that stores other variables, arrays, hashes or other
references. To be exact, a reference stores in the computer’s memory the address
of a variable, an array, a hash or another reference, instead of their actual values.
In this sense, it’s a pointer towards the address of a variable, an array or a hash it
references. References are often used in subroutines, modules as well as in main
programs. In this section we’ll examine the structure and applications of re-
ferences.

8.3.1 Making references

The structure of a reference is as follows:

$refvariable=\$variabletobereferenced

$variabletobereferenced can be scalar variables, arrays or hashes. The scalar
variables, arrays or hashes thus referenced must be preceded with a backward
slash \.

The following stores a scalar variable called $word in a reference called
$wordref:

$word=”Perl reference variable dereference”;
$wordref=\$word;

The same applies to making a reference to an array:

@array=(Perl,reference,variable,dereference);

Subroutines and modules 136

 $arrayref=\@array;

We can make a reference to a hash the same way:

%hash=(Perl,reference,variable,dereference);
 $hashref=\%hash;

However, to access the value of a variable through its reference is not strait
forward. We can’t output a reference the usual way we output a scalar variable,
an array or a hash. Try the following:

$word=”Perl reference variable dereference”;
$wordref=\$word;
print $wordref;
SCALAR(0x2829dac)

@array=(Perl,reference,variable,dereference);
$arrayref=\@array;
print $arrayref;
ARRAY(0x2829e1c)

%hash=(Perl,reference,variable,dereference);
$hashref=\%hash;
print $hashref;
HASH(0x2829e1c)

Instead of the values of $word, $array and %hash, the results are the addresses
of $word, $array and $hash in RAM. There are special expressions for
outputting the contents of scalar variables, arrays and hashes through their
references. This is called dereferencing.

8.3.2 Dereferencing for scalar variables and references

To dereference a reference storing scalar variables we put an extra $ in front of
the reference as follows:

$$refvariable

Look at the following:

$word="Perl reference variable dereference";
$wordref=\$word;

Subroutines and modules 137

print $wordref;
SCALAR(0x2829dac)
print $$wordref;
Perl reference variable dereference

The following shows how to dereference a reference storing another reference:

$word="Perl reference variable dereference";
$wordref1=\$word;
$wordref2=\$wordref1;
$wordref3=\$wordref2;
print "$$wordref1\n";
 print "$$$wordref2\n";
 print "$$$$wordref3";
Perl reference variable dereference
Perl reference variable dereference
Perl reference variable dereference

The value of a variable can be changed through its reference. Look at the

following example:

$text="Subroutines and user-defined functions: what is the difference?";
$refvariable=\$text;
print $$refvariable;
$$refvariable="Sometimes subroutines are also called user-defined
functions.";
print "\n";
print $text;
Subroutines and user-defined functions: what is the
difference?
Sometimes subroutines are also called user defined functions.

By assigning a new value to $$refvariable, the original value of $text is changed
to the new value.

8.3.3 Dereferencing for arrays

There are several ways to dereference for arrays. To dereference for an array, we
put @ before the reference:

@array=(Perl,reference,variable,dereference);
$arrayref=\@array;

Subroutines and modules 138

print join("-",@$arrayref);
Perl-reference-variable-dereference

To dereference for the individual elements of an array, we can use one of the
following expressions:

1. @$referencename[elementnumber]

@array=(Perl,reference,variable,dereference);
$arrayref=\@array;
print @$arrayref[2];
print “\n”;
print @$arrayref[1];
variable
reference

2. $$referencename[elementnumber]

@array=(Perl,reference,variable,dereference);
$arrayref=\@array;
print $$arrayref[0];
print "\n";
print $$arrayref[3];
Perl
Dereference

3. ${$referencename}[elementnumber]

@array=(Perl,reference,variable,dereference);
$arrayref=\@array;
print ${$arrayref}[1];
print "\n";
print ${$arrayref}[2];
reference
variable

4. @{$referencename}[elementnumber]

@array=(Perl,reference,variable,dereference);
$arrayref=\@array;
print @{$arrayref}[2];
print "\n";

Subroutines and modules 139

print @{$arrayref}[0];
variable
Perl

8.3.4 Dereferencing for hashes

To dereference for a hash, we put % before the hash reference, as shown below:

%hash=(Perl,reference,variable,dereference);
$hashref=\%hash;
foreach $word(keys %$hashref){
print "$word:$$hashref{$word}\n";
}
variable:dereference
Perl:reference

To dereference for the individual keys of a hash, we can use one of the express-
ions shown below:

1. $$referencename{keyname}

%hash=(Perl,reference,variable,dereference);
$hashref=\%hash;
print $$hashref{Perl};
print "\n";
print $$hashref{variable};
reference
dereference

2. $referencename->[keyname]

%hash=(Perl,reference,variable,dereference);
$hashref=\%hash;
print $hashref->{Perl};
print "\n";
print $hashref->{variable};
reference
dereference

Subroutines and modules 140

8.4 Use of references in subroutines and modules

In this section we’ll look at how to use references for communication between
the main program and its subroutine or module. Program arrayref.pl uses re-
ferences to pass two arrays to its subroutine for further processing.

arrayref.pl
1. @array1=(subroutines,modules,Perl,program);
2. @array2=(array,hash,variable,functions);
3. getarrays(\@array1,\@array2);
4. sub getarrays{
5. my ($arr1,$arr2)=@_;
6. print "Contents of arr1: \n";
7. print join("\n",@$arr1);
8. print "\n";
9. print "Contents of arr2: \n";
10. print join("\n",@$arr2);
11. }

In statement 3 @array1 and @array2 are turned into two references, which are
in turn put in the anonymous array @_. Statement 5 gets the two references,
which are respectively outputted by statement 7 and 10.

Program arrayhashref.pl uses references to return an array and a hash from
its subroutine to the main program.

arrayhashref.pl
1. $sentence1="Subroutines and user-defined functions: what is the

difference?";
2. $sentence2="Sometimes subroutines are also called user defined

functions.";
3. ($array,$hash)=process($sentence1,$sentence2);
4. print join(" _ ",@$array);
5. print "\n";
6. print join(" ",%$hash);
7. sub process{
8. @string1=split(/ /,uc shift());
9. @string2=split(/ /,uc shift());;
10. foreach $word(@string2){
11. $string2{$word}++;
12. }
13. return(\@string1,\%string2);
14. }

Subroutines and modules 141

Note how @string1 and %string2 are returned as references to the main program.
The result is shown below:

SUBROUTINES _ AND _ USER-DEFINED _ FUNCTIONS: _ WHAT _ IS _
THE _ DIFFERENCE?
SUBROUTINES 1 DEFINED 1 SOMETIMES 1 CALLED 1 ARE 1 FUNCTIONS.
1 ALSO 1 USER 1

Program moduleref.pl uses an exporter module called cleantext.pm to clean
sentences of non-textual characters and extra spaces and punctuation marks, and
gets sentence length. References are used to pass scalar variables from the main
program to the module.

moduleref.pl
1. use cleantext;
2. $sentence1="Subroutines and &^% user-defined functions: ~~what

is the difference?";
3. processtext(\$sentence1);
4. print $sentence1;
5. $sentence2="Sometimes \\\ ** subroutines () are also... called user-

defined +functions.";
6. processtext(\$sentence2);
7. print $sentence2;
8. $sentence3="Some^ people &&claim that there is a \differnce between

>a subrountine and a user-fined function.";
9. processtext(\$sentence3);
10. print $sentence3;
11. $sentence4="Namely, a user-defined functions returns values,]while [a

--- ##subroutine @@@@ does not.";
12. processtext(\$sentence4);
13. print $sentence4;
14. $sentence5="However, we do not make ==such `fine _ _ distinctions

between ~subroutines and user-defined functions.";
15. processtext(\$sentence5);
16. print $sentence5;

Note how $sentence1, $sentence2, $sentence3 and $sentence4 are passed to the
module cleantext.pm as references. The advantage of using the references is that
if the references are assigned new values, these new values will be passed back to
the variables thus referred.

cleantext.pm
1. package cleantext;
2. use Exporter;
3. @ISA=("Exporter");

Subroutines and modules 142

4. @EXPORT=("processtext");
5. sub processtext{
6. $string=shift();
7. $i++;
8. $$string=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
9. $$string=~s/^ | $//g;
10. $sentlength=($$string=~s/ / /g)+1;
11. $$string="This is the cleaned sentence ".$i.". It has ".$sentlength ."

words:\n".$$string."\n\n";
12. }
13. 1;

In the module, statement 8 uses a regular expression to clean sentences of the
non-alphanumeric characters, and the result is passed pack to the referenced
variables in the main program, i.e., $sentece1, $sentence2, $sentence3,
$sentence4 and $sentence5. Statement 10 measures sentence length in number of
words. The result is shown below:

This is the cleaned sentence 1. It has 9 words:
Subroutines and user defined functions what is the
difference
This is the cleaned sentence 2. It has 8 words:
Sometimes subroutines are also called user defined functions
This is the cleaned sentence 3. It has 16 words:
Some people claim that there is a differnce between a
subrountine and a user fined function
This is the cleaned sentence 4. It has 12 words:
Namely a user defined functions returns values while a
subroutine does not
This is the cleaned sentence 5. It has 14 words:
However we do not make such fine distinctions between
subroutines and user defined functions

8.5 Applications

In this section, we’ll put what we’ve learned in this chapter into practice. We’ll
write three programs. The first one uses a subroutine and the second and third use
a module each. Parameters are passed from the main program to the module with
references in the last two programs.

Subroutines and modules 143

8.5.1 Computing arc length

The arc length of rank-frequency distributions can be used in text character-
ization and language typology. The arc length of rank-frequency distribution L is
expressed as follows:

2/1
1

1

2 }1)]1()({[++−=∑
−

=

V

r
rfrfL ,

where V = vocabulary size of a text; r = rank of word frequency, with the highest
frequency being r = 1; f(r) = word frequency at rank r. The following program
computes the arc length of rank-frequency distributions of adventure.txt and
lookingglass.txt. The main program opens the two texts and the subroutine
getarclength computes the arc lengths of the two texts.

arclength.pl
1. open(F,'adventure.txt') or die("File does not exist.\n");
2. read(F,$text,150000);
3. getarclength($text);
4. open(F,'lookingglass.txt') or die("File does not exist.\n");
5. read(F,$text,170000);
6. getarclength($text);
7. sub getarclength{
8. $string=shift(); #assign the texts opened in the main program to $string
9. $string=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
10. @wordtoken=split(/ /,lc $string);
#Statements 11—13 turn the array into a wordlist with word frequencies.
11. foreach $word(@wordtoken){
12. $wordlist{$word}++;
13. }
#Statement 14 assigns word frequencies sorted in descending order to $freq
#using the values function.
14. foreach $freq(sort{$b<=>$a}values %wordlist){
15. $typenumber++; #computes number of word types
#Statements 16—18 assign the highest frequency to $freqr and no
#computation is done; this ensures that $freqr, which serves as f(r), remains
larger than $freq, which serves as f(r+1).
16. if($typenumber<2){
17. $freqr=$freq;
18. }else{
#Statement 19 computes the arc length.
19. $arclength+=(($freqr-$freq)**2+1)**(1/2);
#Statement 20 is for the next round of computing arc length, in which the

Subroutines and modules 144

#present value of $freq serving as f(r-1) now will become f(r) then and the
#new value of $freq will serve as f(r-1).
20. $freqr=$freq;
21. }
22. }
23. print "$arclength\n";
#Statements 24—26 empty $arclength, $typenumber and %wordlist for the
#next text.
24. $arclength=0;
25. $typenumber=0;
26. %wordlist=();
27. }

8.5.2 A module for removing non-alphanumeric characters

In turning a text into a wordlist, a necessary step is to remove non-alphanumeric
characters from the text. ridcharacter.pm does this and can be called by any
program that needs it. The program calling this module must turn the variable
storing the text to be processed into a reference, which is then dereferenced in the
module. wordist.pl turns adventure.txt into a wordlist. It also computes the type-
token ratio, i.e., TTR. ridcharacter.pm is called to remove non-alphanumeric
characters.

wordlist.pl
1. open(F,'adventure.txt') or die("File does not exist!\n");
2. read(F,$text,150000);
3. open(W,">result.txt") or die("Can't create file.\n");
4. use Text::Tabs;
5. $tabstop=30;
6. use ridcharacter;
7. cleantext(\$text);
8. @words=split(/ /,lc $text);
9. $wordnumber=$#words+1;
10. foreach $word(@words){
11. $wordhash{$word}++;
12. }
13. foreach $word(sort keys %wordhash){
14. $typenumber++;
15. print (W expand "$word\t$wordhash{$word}\n");
16. }
17. $ttr=$typenumber/$wordnumber; #compute type-token ratio
18. print (W "____________________\n\n");
19. print (W "The total number of word tokens is: $wordnumber\n");

Subroutines and modules 145

20. print (W "The total number of word types is: $typenumber\n");
21. print (W "The TTR ratio is : $ttr");
22. close(F);
23. close(W);

ridcharacter.pm
1. package ridcharacter;
2. use Exporter;
3. @ISA=("Exporter");
4. @EXPORT=("cleantext");
5. sub cleantext{
6. my($text);
7. $text=shift();
8. $$text=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
9. $$text=~s/^ | $//g;
10. }
11. 1;

8.5.3 A lexical comparison program

comparetexts.pl makes lexical comparisons between adventure.txt and
lookingglass.txt. Its logic is similar to that of comparehash.pl in 7.2.3. Words
unique to each of the texts are picked out and put in aliceonly.txt and
glassonly.txt respectively, while those occurring in both texts are picked out and
stored in sharedwords.txt. A lemmatization module lemmatizer.pm is called in
the program to lemmatize the words in the two texts. This module can be called
by any program that needs it; it passes back to the calling program a referenced
hash containing the lemmatized wordlist and the total number of word tokens of
the text. The program also has a subroutine printwords that creates output files
and prints out the results to them.

comparetexts.pl
1. use Lemmatizer;
2. use Text::Tabs;
3. $tabstop=30;
4. open(F,"adventure.txt")or die("File can't be opened.\n");
5. open(G,"lookingglass.txt")or die("File can't be opened.\n");
6. read(F,$text1,150000);
7. read(G,$text2,170000);
#In statements 9—10, $text1 and $text2 are turned into two hashes contain-
#ing lemmatized wordlists in the Lemmatizer module and assigned to the
#two references $wordlist1 and $wordlist2.
8. ($wordlist1)=lemmatize($text1);

Subroutines and modules 146

9. ($wordlist2)=lemmatize($text2);
10. foreach $word(keys %$wordlist1){
11. if (exists($$wordlist2{$word})){
12. $sharedwords{$word}=$$wordlist1{$word}.":".$$wordlist2{$word};
13. delete($$wordlist1{$word});
14. delete($$wordlist2{$word});
15. }
16. }
17. $wordlist3=\%sharedwords;
18. printwords($wordlist1,$wordlist2,$wordlist3);
19. close(F);
20. close(G);
21. sub printwords{
22. open(H,">aliceonly.txt")or die("File can't be opened.\n");
23. open(I,">glassonly.txt")or die("File can't be opened.\n");
24. open(J,">sharedwords.txt")or die("File can't be opened.\n");
25. $filehandlenumber=72;#the ASCII value of H
26. while ($wordlist=shift()){
#In the following, the first time printwords is called, the value of $file-
#handle is H, while the second time it’s I.
27. $filehandle=chr $filehandlenumber;
28. foreach $word(sort(keys(%$wordlist))){
29. $wordnumber++;
30. print ($filehandle expand("$word\t$$wordlist{$word}\n"));
31. }
32. print ($filehandle

"___\n");
33. print ($filehandle "The total number of words in file is:

$wordnumber.\n");
34. $filehandlenumber++;
35. $wordnumber=0;
36. }
37. close(H);
38. close(I);
39. close(J);
40. }
41.

lemmatizer.pm
1. package Lemmatizer;
2. use Exporter;
3. @ISA=("Exporter");
4. @EXPORT=("lemmatize");
5. sub lemmatize{

Subroutines and modules 147

6. my($textinput,$word,$dicinput,$wordform, $tokennumber, $lemma,
@tempwordlist,%dichash,%wordlist,%lemmatemp);

7. $textinput=shift();
8. $textinput=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
9. $textinput=~s/^ | $//g;
10. @tempwordlist=split(/ /,$textinput);
11. foreach $word(@tempwordlist){
12. $tokennumber++;
13. $word=lc $word;
14. $word=ucfirst($word);
15. $tempwordlist{$word}++;
16. }
17. open(LEMMAFILEHANDLE,"lemmadic.txt")or die("File does not

exist.\n");
18. read(LEMMAFILEHANDLE,$dicinput,900000);
19. %dichash=split(/[\n]/,$dicinput);
20. foreach $wordform(sort(keys(%dichash))){
21. $wordform=ucfirst($wordform);
22. if(exists($tempwordlist{$wordform})){
23. $lemma=$dichash{$wordform};
24. $lemmatemp{$lemma}+=$tempwordlist{$wordform};
25. delete($tempwordlist{$wordform});
26. if(exists($tempwordlist{$lemma})){
27. $lemmatemp{$lemma}+=$tempwordlist{$lemma};
28. delete($tempwordlist{$lemma});
29. }
30. }
31. }
32. %wordlist=(%tempwordlist,%lemmatemp);
33. %tempwordlist=();
34. %lemmatemp=();
35. %dichash=();
#The following statement passes back a referenced wordlist hash and a
#scalar variable containing number of word tokens in text.
36. return(\%wordlist,$tokennumber);
37. close(LEMMAFILEHANDLE);
38. }
39. 1;

Part of the results is as follows.

aliceonly.txt:
… …
Worry 2

Subroutines and modules 148

Wow 6
Wretch 2
Writhe 1
Yelp 1
Yer 4
Youth 6
Zealand 1
Zigzag 1

The total number of words in file is: 705.

glasssonly.txt:
… …

Worst 7
Wough 1
Wring 2
Wrist 1
Yellow 2
Yhtils 1
Ykcowrebbaj 1
Yonder 2
Ysmim 1

The total number of words in file is: 836.

sharedwords.txt:
… …

Ye 1:3
Year 3:6
Yes 13:14
Yesterday 3:4
Yet 25:17
You 410:613
Young 5:5
Your 63:71

Yours 3:1
Yourself 10:11

Subroutines and modules 149

The total number of words in file is: 1234.

Exercises

1. Assign $sentence1 and $sentence2 to two references and then output the
contents of $sentence1 and $sentence2 from the references.

$sentence1= "Alice was beginning to get very tired of sitting by her sister on
the bank and of having nothing to do";
$sentence2="In another moment down went Alice after it, never once con-
sidering how in the world she was to get out again. ";

2. Assign the following array to a scalar variable and output the array contents in
ascending order from the variable using reference.

$array[0]="apple";
$array[1]="peach";
$array[2]="orange";
$array[3]="banana";
$array[4]="apricot";
$array[5]="grape";

3. Assign the above array to a reference that is an element of a hash, and output
the contents of the array in ascending order from the reference.

4. In exercise 4 of Chapter 3 we wrote a program called wordlength.pl (see
model answers for Chapter 3 in Appendix). Now modify this program by using
three subroutines to respectively replace the statements for creating the nine
output files (from the file handles G to O), the statements for outputting words of
different length to files holding words of specified length, and those for out-
putting word length information to wordinfo.txt.

5. In wordtype.pl in 6.4.3 there are some statements for combining identical array
elements and computing their frequency. Turn these statements into an exporter
module called processarray.pm, adding a sorting function in it. Then modify
wordtype.pl by putting ridcharacter.pm in 8.5.2 and processarray.pm in it.

9 Directory and file management

In this chapter, we’ll look at directory and file management within a Perl pro-
gram. Directory and file management includes the following topics: creation or
removal of directories; changing file path; collecting the file names within a
directory; deleting files and renaming files; changing file attributes; formatting
files etc.

9.1 Directory management

The following functions are used for directory management.

mkdir('drive:\directoryname') This function sets up a new directory with
specified drive and directory name. The following makes a directory called
newdirectory in d .

mkdir (‘d:\newdirectory’)or die (“Can’t create directory.”);

rmdir('drive:\directoryname') This function removes the specified directory
from the specified drive. The directory to be removed must be empty.

rmdir ('d:\newdirectory') or die ("Can't remove directory.");

The following three functions respectively open a directory, get the file

names in it and then close the directory:

opendir(directoryhandle,'drive:\directoryname')

readdir(directoryhandle)

closedir(directoryhandle)

Now we’ll access the directory perllesson in d and output all the file names to a
file called dirfiles.txt.

dirfile1.pl
1. open(F,">dirfiles.txt") or die ("Can't open file.\n");
2. opendir (D,'d:\perllesson') or die ("Can't open directory.");
3. print F join("\n", readdir(D));
4. close(F);
5. closedir(D);

Directory and file management 151

The opendir function also has the following form:

opendir(directoryhandle,'drive:\numberofdots')

To get the file names of the current directory, use one dot and drive is optional.

dirfile2.pl
1. open(F,">dirfiles.txt") or die ("Can't open file.\n");
2. opendir (D,'.') or die ("Can't open directory.");
3. print F "Contents of the current directory:\n";
4. print F join("\n", readdir(D));
5. close(F);

To get all the directory names of the current drive and the file names outside
these directories in the drive, use two dots, and drive is optional.

dirfile3.pl
1. open(F,">dirfiles.txt") or die ("Can't open file.\n");
2. opendir (D,'e:\..') or die ("Can't open directory.");
3. print F "\nContents of drive E:\n";
4. print F join("\n", readdir(D));
5. close(F);
6. closedir(D);

glob(‘drive\directory*.*’) This function gets all the file names in the

specified directory.

print join(“\n”,glob(‘d:\perllesson*.*’));

This prints out all the file names in d:\perllesson separated with line breaks. We
can also get all the file names with the file extension of txt in the current
directory and put them in an array:

@filename=glob(‘*.txt’);
print join("\n",@filename);

9.2 File management

The following functions are for file management operations.

rename(‘oldfilename’,’newfilename’) This function changes oldfilename to
newfilename. The following changes result.txt to testresult.txt:

Directory and file management 152

rename(“result.txt”,”testresult.txt”) or die (“Can’t rename the file.”);

chmode(attribute,’filename’) This function changes file attributes. The
following numbers are for setting attribute: 0666: read/write; 0444: read only.
The following changes the attribute of result.txt as read only:

chmod(0444,'result.txt');

The following two functions respectively get and set file attributes using the

Win32::File module.

Win32::File::GetAttributes("filename", variable) This function gets the

attributes of filename and puts the result to variable. File attributes are expressed
in the following numbers: 1, read only; 2, hidden; 32; archive.

Win32::File::SetAttributes("filename",attribute) This sets file attributes.
attribute has the following settings: ARCHIVE, READONLY, HIDDEN.

To use the above two functions, the Winc32::File module must be called

first. The following program sets the file attribute of result.txt as hidden and then
outputs the file attribute number:

setattribute.pl
use Win32::File;
Win32::File::SetAttributes("result.txt",HIDDEN);
Win32::File::GetAttributes("result.txt",$attricode);
print $attricode;
2

utime(variable,variable,”filename”) This function changes the creation

time of filename. variable must be assigned the intended creation time of the file
in seconds. This seems a complicated thing to do. Actually it’s not as difficult as
it sounds. In Perl, time starts on January 1, 1970, and there is a function to get the
time between now and then in seconds: time(). As the time of writing this section,
1,260,016,947 seconds have elapsed since then. So to change the creation time of
a file, we just use time() plus or minus the desired number of days in terms of
seconds and assign this value to a variable. Suppose we want to change the
creation time of result.txt two days earlier than its actual creation time, use the
following:

$when=time()-2*24*3600;
utime($when,$when,"result.txt");

Directory and file management 153

truncate(“filename”, length) This function truncates the specified file by
length (in number of bytes).

truncate(“result.txt”,2000);

This truncates 2,000 bytes from result.txt.

copy(“file1”,”file2”) This function copies file1 to file2. To use this function,
the File::Copy module must be called.

use File::Copy;
copy("adventure.txt","adventurecopy.txt");

The above copies adventure.txt to a file called adventurecopy.txt.

eof filehandle This function checks whether the end of a file is reached. The
following repeatedly prints a chunk of text 100 bytes in length from alice1.txt
until the end of the file is reached:

open(F,"alice1.txt") or die ("File can't be opened.\n");
until(eof F){
read(F,$text,100);
print "$text\n";
}

compare(“file1”,”file2”) This function checks whether the contents of file1

and the contents of file2 are identical. To use this function, the File::Compare
module must be called first.

use File::Compare;
if(compare("alice1.txt","alice2.txt")){
print "Different\n";
}else{
print "Same";
}
Different

unlink(<filename>) This function deletes a specified file or files. The wild

card * can be used in the function. Files thus deleted can’t be recovered. So this
function should be used with care. The following deletes all files whose names
begin with word with the extension of txt:

unlink(<word*.txt>);

Directory and file management 154

9.3 Formatting output files

When writing data to output files, we may need to arrange the data in certain
format, e.g., left-justification, right-justification, centre-justification etc. If the
output file is very long, perhaps we may also want to divide the file into pages of
certain length with a page heading on each page. In this section we’ll learn ways
for doing this.

The basic structure for formatting data and send them to an output file
without a page heading and page division is as follows:

format outputfilehandle =
formatting expression
.
write outputfilehandle

The basic structure for dividing an output file into pages of certain length

with a page heading on each page is as follows:

format outputfilehandle_TOP =
page setting expression
.

In the following sections we’ll learn how to use the data formatting structure

and the page division structure to format data and output files.

9.3.1 Outputting data in their original format

The formatting expression can be any character on the keyboard, including tabs,
line breaks and white spaces, except @, ~, ^ and #. They can also be a string or a
text, which are outputted in its original format. Look at the following text:

* *

* PERL FOR *

* QUANTITATIVE LINGUISTICS *

* *

 December 7, 2009

The following program outputs this text in its original format:

Directory and file management 155

asterisktitle.pl
1. open(W,”>result.txt”) or die (“Can’t create file.\n”);
2. format W =
3. *********************************
4. * *
5. * PERL FOR *
6. * QUANTITATIVE LINGUISTICS *
7. * *
8. *********************************
9.
10. December 7, 2009
11. .
12. write W;
13. close(W);

The formatting expression is from statement 3 to statement 10, between which
everything, including white spaces and line breaks, is outputted to result.txt. Note
that statement 9 only has a line break, which is sent to the output file.

9.3.2 Arranging data in left-justified columns

To arrange data in left-justified columns, we use the following formatting ex-
pression:

@<+
variable

Here @ represents the contents of variable, <, as well as @, stands for the width
of one character, and + means one or more < (in the rest of this chapter we’ll use
the plus sign in formatting symbols to represent one or more the preceding
character). Suppose we want to set the line width of the left-justified contents of
a variable to 25 characters, then 24 <’s following @ should be used since @ also
stands for the width of one character. More than one set of @<+ and variable
can be used to format data, as shown below:

@<+@<+@<+...
variable1, variable2, variable3…

Look at the following data, which consist of words, word frequency and

word length: Grammar, 33, Linguistics, 9, Syntax, 45, Word, 154, Onomatopoeia,
1. We’ll output this line of data in three left-justified columns, one column
containing words, 20 characters in width; the second column frequencies, eight

Directory and file management 156

characters in width; and the third parts of speech N. The program is as follows:

formatleftjust.pl
1. open(F,">result.txt") or die ("Can't create file.\n");
2. %wordinfo=(Grammar,33,Linguistics,9,Syntax,45,Word,154,Onomato-

poeia,1);
3. foreach $word(keys %wordinfo){
4. format F=
5. @<<<<<<<<<<<<<<<<<<<@<<<<<<<N
6. $word,$wordinfo{$word}
7. .
8. write(F);
9. }

The result is shown below:

Onomatopaeia 1 N
Syntax 45 N
Grammar 33 N
Linguistics 9 N
Word 154 N

The formatting expression is from statement 5 to statement 6. The first set of
@<+ creates a column 20 characters in width (one @ and 19 <’s). Since no
words are that long, the formatting symbol produces blanks to pad the words out
so that each word occupies 20 spaces despite its actual length. The second
column begins 21 characters from the left and is eight characters in width (one @
plus 7 <’s). The parts of speech of these words, N, are put in the third column.

9.3.3 Arranging data in right-justified columns

To arrange data in right-justified columns, only change < to > in the formatting
symbol:

@>+

As with @<+, the number of @ and > determines the width of a right-justified
column. More than one set of @>+ can be used to format data, as shown below:

@>+@>+@>+...
variable1, variable2,variable3…

Now we’ll arrange the data used in 9.3.2 in three right-justified columns, one
column containing words, 20 characters in width; the second column frequencies,

Directory and file management 157

eight characters in width; and the third parts of speech five characters from right
of the second column. The program is as follows:

formatrightjust.pl
1. open(F,">result.txt") or die ("Can't create file.\n");
2. %wordinfo=(Grammar,33,Linguistics,9,Syntax,45,Word,154,Onomatop

oeia,1);
3. foreach $word(keys %wordinfo){
4. format F=
5. @>>>>>>>>>>>>>>>>>>>@>>>>>>> N
6. $word,$wordinfo{$word}
7. .
8. write(F);
9. }

Note the five spaces preceding N, which create five spaces between the right of
the second column and N. The following is the result:
Onomatopaeia 1 N

 Syntax 45 N
 Grammar 33 N
 Linguistics 9 N
 Word 154 N

9.3.4 Arranging data in centre-justified columns

The following formatting expression arranges data in centre-justified columns:

@|+

More than one set of @|+ can be used to format data, as shown below:

@|+@|+@|+…
variable1, variable2, variable3…

Here the number of @ and | determines the width of a centre-justified column.
The following program puts a list of words in two centre-justified columns, each
20 characters in width:

formatcjust.pl
1. open(F,">result.txt") or die ("Can't create file.\n");
2. %wordlist=(Grammar,Linguistics,Syntax,Word,Onomatopoeia,Letter,S

emantics,Morph);

Directory and file management 158

3. foreach $word(keys %wordlist){
4. format F=
5. @|||||||||||||||||||@|||||||||||||||||||
6. $word,$wordlist{$word}
7. .
8. write (F);
9. }
10. close(F);

The result is shown below:
 Onomatopoeia Letter
 Syntax Word
 Grammar Linguistics
 Semantics Morph

The following formatting expression centre-justifies decimal numbers by the
decimal point:

@#+.#+

To format decimal numbers stored in several variables, more than one set of
@#+.#+ can be used, as shown below:

@#+.#+@#+.#+@#+.#+…
variable1, variable2, variable3…

Each # represents a digit. @ also stands for a digit place on the left of the decimal
point. If there are fewer digits than # on the right of the decimal point, 0’s are
added so that the number of digits is equal to that of # on the right. Look at the
following example:

justifydecimal.pl
1. open(F,">result.txt") or die ("Can't create file.\n");
2. @decimal=(0.0445,324.5579,11.2213,24.31,4,1189.22137);
3. foreach $number(@decimal){
4. format F=
5. @####.#####
6. $number
7. .
8. write(F);
9. }

The result is shown below:

Directory and file management 159

0.04450
 324.55790
 11.22130
 24.31000
 4.00000
 1189.22137

9.3.5 Formatting data that has line breaks

If data to be formatted have line breaks, only the part preceding the first line
break will be sent to the output file with the above formatting expressions; the
rest will all be lost. Look at the following example:

formatlinebreak1.pl
1. open(F,">result.txt") or die ("Can't create file.\n");
2. $text="Perl for quantitative\n linguistics.";
3. format F=
4. @>>>>>>>>>>>>>>>>>>>>>>
5. $text
6. .
7. write(F);

The result is shown below:

 Perl for quantitative

The following two formatting expressions overcome this shortcoming;
they remove line breaks in the data to be formatted and then arrange the data in
the desired format.

(1) putting data with line breaks in left-justified columns:

~~^<+
variable

(2) putting data with line breaks in right-justified columns:

 ~~^>+
variable

Note that in the above two formatting expressions the formatting symbol ~~
generates two spaces and put them to the left of the data. The following program

Directory and file management 160

removes the line breaks in the data and reformats the data into one left-justified
column with specified width enclosed with +:

formatlinebreak2.pl
1. open(W,">result.txt") or die ("Can't create file.\n");
2. $text="Alice was beginning to get very tired\n of sitting by her sister on

the bank, and of having nothing \nto do: once or twice she had peeped
into the book her sister was reading,\n but it had no pictures or
conversations in it, `and what is the use of a\n book' thought Alice
`without pictures or conversation?";

3. format W=
4. +++
5. + ~~^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< +
6. $text
7. +++
8. .
9. write(W);

Statements 4 and 7 respectively produce four spaces followed by 45 plus signs.
Statement 5 produces four spaces, one plus sign and three spaces followed by
lines of data, each line ending in two spaces and a plus sign. The result is shown
below:

+++
 + Alice was beginning to get very tired +
 + of sitting by her sister on the bank, +
 + and of having nothing to do: once or +
 + twice she had peeped into the book her +
 + sister was reading, but it had no +
 + pictures or conversations in it, `and +
 + what is the use of a book' thought +
 + Alice `without pictures or +
 + conversation? +
 +++
To keep line breaks in data in formatting expressions and send the data to

the output file, use the following formatting symbol:

@*

Look at the following:

formatlinebreak3.pl
1. open(F,">result.txt") or die ("Can't create file.\n");

Directory and file management 161

2. $text="Perl for quantitative\nlinguistics.";
3. format F=
4. @*
5. $text
6. .
7. write(F);
8. close(F);

The result is shown below:
Perl for quantitative
linguistics.

9.3.6 Producing page heading and paginating output files

If the output file is very long, we may want to divide the output file into pages,
each with a page heading and page number. In this case, the page setting struc-
ture is used:

format outfilehandle_TOP =
page setting expression
.

The default page length generated by this page setting structure is 60 lines. In
page setting expression we can use any character on the keyboard, including tabs,
line breaks and white spaces, except @, ~, ^ and #. We can also use a string or a
text formatted with the formatting symbols. page setting expression can also
consist of page number generating symbol, which is in the following form:

"string $%"

The page setting structure can be used together with the data formatting structure.
The following script uses the two structures to add a page heading and page
number to the output file and format the data.

formatpage.pl
1. open(F,">result.txt") or die ("Can't create file.\n");
2. %wordinfo=(Come,332,Linguistics,9,Study,45,Work,154,Onomatopaei

a,1);
3. $pagetitle="WORDLIST";
4. format F_TOP=
5.
6. @||||||||||||||||||||||||||||||

Directory and file management 162

7. $pagetitle
8. @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
9. "Page $%"
10. WORD LENGTH FREQ
11. ------------------------------
12. .
13. foreach $word(keys %wordinfo){
14. $wordlength=length($word);
15. format F=
16. @<<<<<<<<<<<<<@<<<<<<<@<<<<<<<
17. $word,$wordlength,$wordinfo{$word}
18. .
19. write(F);
20. }
21. close(F);

Statement 5 is an empty line, which is sent to the output as such. Statement 6
centre-justifies $pagetitle. Statement 8 right-justifies Page $%. The result is as
follows:

 WORDLIST
 Page 1
WORD LENGTH FREQ

Onomatopaeia 12 1
Work 4 154
Linguistics 11 9
Study 5 45
Come 4 332

As mentioned above, the default page length generated by the page setting
structure is 60 lines. This value can be reset with the following structure:

variable = select outputfilehandle
$== numberoflines
select variable

The following program makes an unlemmatized wordlist of lookingglass.txt,
which is divided into pages. The number of lines per page is set to 43.

pagedwordlist.pl
1. open(F,'lookingglass.txt') or die("File does not exist!\n");
2. read(F,$text,170000);
3. open(W,">wordlist.txt") or die("Can't create file.\n");

Directory and file management 163

4. $text=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
5. $text=~s/^ | $//g;
6. @wordarray=split(/ /,lc $text);
7. foreach $word(@wordarray){
8. $wordhash{$word}++;
9. }
#Statements 10—12 set page length to 43 lines.
10. $gethandle=select W;
11. $==43;
12. select $gethandle;
13. $pagetitle="THROUGH THE LOOKING-GLASS";
14. format W_TOP=
15.
16. @||||||||||||||||||||||||||||||||||
17. $pagetitle
18. @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
19. "Page $%"
20. WORD FREQ LENGTH
21. -----------------------------------
22. .
23. foreach $word(sort keys %wordhash){
24. $wordlength=length($word);
25. format W=
26. @<<<<<<<<<<<<<<@>>>>>>>@>>>>>>>>>>>
27. $word,$wordlength,$wordhash{$word}
28. .
29. write W;
30. }
31. close(F);
32.close(W);

Part of the result is shown below:

 THROUGH THE LOOKING-GLASS
 Page 36
WORD FREQ LENGTH

leaves 6 6
leaving 7 1
led 3 2
left 4 10
leg 3 4
legs 4 2

Directory and file management 164

leisurely 9 1
lend 4 1
length 6 1
less 4 1
lessons 7 6
let 3 30
letter 6 1
letters 7 1
licking 7 1
lid 3 3
lie 3 2
lies 4 1
life 4 8
lifted 6 5
light 5 3
lighted 7 1
lighting 8 1
lightly 7 1
lightning 9 3

9.4 Applications

This section contains three practical programs. The first one divides adventure.txt
into 45-line, 2-column pages. The second computes vocabulary growth. The last
one gets word range in a collection of texts. Word range here refers to the
number of different texts a word occurs in.

9.4.1 A page-formatting program

The following program divides adventure.txt into pages containing two columns
of text. Each page is 45 lines in length.

twocolumn.pl
1. open(F,"adventure.txt") or die ("Can't open file.\n");
2. read(F,$text,150000);
3. open(W,">result.txt") or die ("Can't create file.\n");
4. $text=~tr/ / /s;
5. @textarray=split(/ /,$text);
6. for($i=1;$i<$#textarray+1;$i++){

Directory and file management 165

#For a 45-line page that has two columns, each column has around 1240
#characters.
7. if(length($columna)<=1240){ #the first column
8. $columna.=$textarray[$i]." ";
9. }elsif(length($columnb)<=1240){
10. $columnb.=$textarray[$i]." "; #the second column
11. }
#In the following, after the second column is completed, print the two-
#column page. The part after OR is for the last page on which $columnb
#may not have 1240 characters.
12. if(length($columnb)>=1240 or $i>=$#textarray){
13. $title="ALICE'S ADVENTURES IN WONDERLAND";
14. $gethandle=select W;
15. $==45;
16. select $gethandle;
17. format W_TOP=
18. #This line is empty.
19. @||
20. $title
21. @>>>

>>>>>>>>>>>>>>>>>>>>>
22. "Page $%"
23. .
24. format W=
25. ~~^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~^<<<<<<<<<<<<

<<<<<<<<<<<<<<<<<<<<<
26. $columna,$columnb
27. __

28. .
29. write(W);
#Statements 30—31 empty $columna and $columnb for the next page.
30. $columna="";
31. $columnb="";
32. }
33. }
34. close(F);
35. close(W);

Part of the result is shown below:

 ALICE'S ADVENTURES IN WONDERLAND
Page 1

ALICE'S ADVENTURES IN seemed quite natural); but

Directory and file management 166

WONDERLAND CHAPTER I when the Rabbit actually
Down the Rabbit-Hole TOOK A WATCH OUT OF ITS
Alice was beginning to get WAISTCOAT- POCKET, and
very tired of sitting by looked at it, and then
her sister on the bank, hurried on, Alice started
and of having nothing to to her feet, for it
do: once or twice she had flashed across her mind
peeped into the book her that she had never before
sister was reading, but it see a rabbit with either a
had no pictures or waistcoat-pocket, or a
conversations in it, `and watch to take out of it,
what is the use of a and burning with
book,' thought Alice curiosity, she ran across
`without pictures or the field after it, and
conversation?' So she was fortunately was just in
considering in her own time to see it pop down a
mind (as well as she large rabbit-hole under
could, for the hot day the hedge. In another
made her feel very sleepy moment down went Alice
and stupid), whether the after it, never once
pleasure of making a considering how in the
daisy-chain would be worth world she was to get out
the trouble of getting up again. The rabbit-hole
and picking the daisies, went straight on like a
when suddenly a White tunnel for some way, and
Rabbit with pink eyes ran then dipped suddenly down,
close by her. There was so suddenly that Alice had
nothing so VERY remarkable not a moment to think
__

9.4.2 Computing vocabulary growth and number of hapax legomena

The following program computes vocabulary growth of the 20 text chunks of
adventure.txt: alice1.txt—alice20.txt. It turns the twenty text chunks into 20
lemmatized wordlists and outputs two formatted files, the first containing a
wordlist for the 20 text chunks, the second vocabulary growth, the growth of
hapax legomena and the ratio between the number of hapax legomena and
vocabulary size. The program uses three subroutines: makewordlist,
getvocgrowth and printcumuwordlist . The first subroutine produces a wordlist

Directory and file management 167

for each of the text chunks; the second the vocabulary growth from alice1.txt to
alice20.txt; and the third the overall wordlist of the 20 text chunks. The program
uses the system(cls) function, which clears the screen of the old output.

vocgrowth.pl
1. use Lemmatizer;
2. use Text::Tabs;
3. $tabstop=30;
4. open(R,">wordlist.txt") or die("Can't create file\n");
5. open(W,">vocgrowth.txt") or die("Can't create file\n");
6. $[=1; #set the first array element number to 1 instead of 0
#Statement 7 puts all the text names in @filename.
7. @filenames=glob("alice*.txt");
8. for($i=1;$i<$#filenames+1;$i++){
#Statements 9—12 open the text chunks and create the output files called
#wordlist1.txt, wordlist2.txt…etc.
9. $inputfile=@filenames[$i];
10. $outputfile='>wordlist'.$i.'.txt';
11. open(F,$inputfile)or die("File can't be opened!\n");
12. open(G,$outputfile) or die("Cant' create files.\n");
13. makewordlist();
14. getvocgrowth();
15. }
16. printcumuwordlist();
17. close(G);
18. close(R);
19. close(W);
20. sub makewordlist{
21. read(F,$text,10000);
#In statement 22, the lemmatizer module returns a referenced hash storing
#a wordlist and a scalar variable storing number of word tokens, which
#are respectively assigned to $wordlist and $wordnumber.
22. ($wordlist,$wordnumber)=lemmatize($text);
#In statement 23 $wordlist is dereferenced which is assigned to @wordlist.
#The purpose is to get vocabulary size of each text chunk. Since a word list
#consists of words and their frequencies, when assigned to an array, words
and frequencies all become array elements. In statement 24 the total
#number of elements divided by 2 gets vocabulary size.
23. @wordlist=%$wordlist;
24. $textvocsize=$#wordlist/2;
25. $pagetitle="WORDLIST";
#The following generates subtitles alice1.txt, alice2.txt etc with text size
#and vocabulary size.
26. $subtitle="Text: alice".$i.".txt\nText size: $wordnumber\nVocabulary

Directory and file management 168

size: $textvocsize";
#Statements 27—38 generate page tops.
27. $gethandle=select G;
28. $==$textvocsize+6;#lines on page is number of words plus a 6-line

heading
29. select $gethandle;
30. format G_TOP=
31. @|||||||||||||||||||||||||||||||||||
32. $pagetitle
#Statements 33—34 send $subtile to output files with line breaks in it.
33. @*
34. $subtitle
35. #This line is empty.
36. WORD FREQUENCY
37. ------------------------------------
38. .
39. foreach $word(sort keys %$wordlist){
40. $cumuwordlist{$word}+=$wordlist->{$word};
41. format G=
42. @<<<<<<<<<<<<<<<<<<<<<<<<<<@<<<<<<<<
43. $word,$wordlist->{$word} #format words and frequency
44. .
45. write(G);
46. }
47. }
48. sub getvocgrowth{
49. system(cls);
50. $cumutextsize+=$wordnumber;
51. foreach $word(sort keys %$wordlist){
#In the following, if a word does not occur in either %nonhapax or %hapax,
#$vocgrowth is increased by 1.
52. unless(exists($nonhapax{$word})){
53. unless(exists($hapax{$word})){
54. $vocgrowth++;
55. }
56. }
#The word from %wordlist is put to %nonhapax and its frequency
#computed.
36. $nonhapax{$word}+=$wordlist->{$word}; #get word frequency
#In the following, if the word can be found in %hapax, it’s no longer a
#hapax and must be deleted from %hapax, and hapax number must be
#reduced by 1.
58. if (exists($hapax{$word})){
59. delete($hapax{$word});

Directory and file management 169

60. $hapaxnum--;
#If the word does not exist in %hapax it is put in %hapax but its frequency
#must still be added.
61. }else{
62. $hapax{$word}+=$nonhapax{$word};
#In the following, although the word may be new in %hapax but its fre-
#quency still may be more than 1. e.g., the word may occur 4 times in a text
#chunk but it may still be new in %hapax. If the frequency is 1, increase
#number of hapax by 1, otherwise it must be deleted from %hapax.
63. if ($hapax{$word}==1){
64. $hapaxnum++;
65. }else{
66. delete($hapax{$word});
67. }
68. }
69. }
70. $hv= sprintf "%.4f", $hapaxnum/$vocgrowth;
71. $pagetitle="VOCABULARY GROWTH";
72. format W_TOP=
73. @||
74. $pagetitle
75. #This line is empty.
76. TEXT SIZE VOC GROWTH HAPAX H/V RATIO
77. ---
78. .
79. format W=
80. @<<<<<<<<<<<<<<<<@<<<<<<<<<<<@<<<<<<@<<<<<
81. $cumutextsize,$vocgrowth,$hapaxnum,$hv
82. .
83. write(W);
84. print "Number of file processed: $i\t Vocabulary size: $vocgrowth\n";
85. }
86. sub printcumuwordlist{
87. $pagetitle="WORDLIST";
88. $subtitle="Text size: $cumutextsize\nVocabulary size: $vocgrowth";
89. $gethandle=select R;
90. $==$vocgrowth+7;
91. select $gethandle;
92. format R_TOP=
93. @|||||||||||||||||||||||||||||||||||
94. $pagetitle
95. @*
96. $subtitle
97. #This line is empty.

Directory and file management 170

98. WORD FREQUENCY
99. ------------------------------------
100. .
101. foreach $word(sort keys %cumuwordlist){
102. format R=
103. @<<<<<<<<<<<<<<<<<<<<<<<<<<@<<<<<<<<
104. $word,$cumuwordlist{$word}
105. .
106. write(R);
107. }
108. }

The following is part of the wordlist of alice1.txt:
 WORDLIST
Text: alice1.txt
Text size: 1403
Vocabulary size: 393
WORD FREQUENCY

A 34
About 6
Across 2
Actually 1
Adventure 1
Afraid 1
After 3
Afterward 1
Again 4
Air 2
… …

The following are the contents of vocgrowth.txt:
 VOCABULARY GROWTH
TEXT SIZE VOC GROWTH HAPAX H/V RATIO

1403 393 209 0.5318
2814 578 277 0.4792
4185 720 324 0.4500
5544 823 334 0.4058
6835 933 386 0.4137
8222 1013 398 0.3929

Directory and file management 171

9618 1094 429 0.3921
10926 1179 469 0.3978
12200 1277 518 0.4056
13583 1352 537 0.3972
14938 1413 545 0.3857
16347 1481 569 0.3842
17644 1543 589 0.3817
19082 1624 629 0.3873
20411 1699 651 0.3832
21726 1747 662 0.3789
23180 1792 673 0.3756
24537 1854 699 0.3770

9.4.3 A program for computing word range

Word range refers to how many different texts a word occurs in. The following
program wordrange.pl computes word range in 20 texts: alice1.txt—alice20.txt,
and the vocabulary growth. In addition, it also produces a wordlist for each of the
texts, and an overall wordlist for these texts. It uses the lemmatization module
lemmatizer and four subroutines: getwordlist, getrange, getvocgrowth and
printrange, which respectively produce a wordlist for each of the texts, compute
word range and vocabulary growth, and send the word range data to an output
file. A new Perl function eval is used. This function can turn a variable into a
Perl command. For example, if we assign open(F,’adventure.txt’) to a variable
called $openfile in the following statement

$openfile="open(F,’adventure.txt’)";

then

eval $openfile
opens the file adventure.txt whose file handle is F.

wordrange.pl
1. use Lemmatizer;
2. mkdir "data" or die "Can't create directory";
3. open(Q,'>data\wordrange.txt');
4. open(T,'>data\vocgrowth.txt');
5. for ($i=1;$i<21;$i++){
6. $infilename='alice'.$i.'.txt'; #input files alice1.txt, alice2.txt etc
7. $textname='Alice'.$i;

Directory and file management 172

8. $outfilename='>data\wordlist'.$i.'.txt';#for outputting wordlists
9. $openfile=q/open(W,"$infilename") or die("Can't open files.\n")/;
10. $writefile=q/open(R,"$outfilename") or die("Can't create files.\n")/;
11. eval $openfile;
12. eval $writefile;
13. read(W,$text,10000);
14. ($wordlist,$textsize)=lemmatize($text);
15. getwordlist();
16. getrange();
17. getvocgrowth();
18. }
19. printrange();
20. close(R);
21. close(Q);
22. close(T);
23. close(W);
24. sub getwordlist{
25. system(cls);
26. print("Processing file: $i\n"); #send processing info to screen
27. use Text::Tabs;
28. $tabstop=25;
29. $textvocsize=0;
#Statements 30—34 get wordlists for each of the texts.
30. foreach $word(sort(keys(%$wordlist))){
31. $textvocsize++; #get vocabulary size of each of the texts
32. print(R expand("$word\t$wordlist->{$word}\n"));
33. }
34. print (R "______________\nVocabulary size of $textname:

$textvocsize");
35. }
36. sub getrange{
37. use Text::Tabs;
38. $tabstop=5;
39. foreach $word(sort(keys(%$wordlist))){
40. $wordfreq=$wordlist->{$word};
41. $cumuvoc{$word}+=$wordfreq;

 #%cumuvoc contains cumulative vocabulary and cumulative word
 # frequency
42. $cumufreq=$cumuvoc{$word};
#The following compute word range.
43. if(exists($cumuvoc{$word})){
44. $wordrange{$word}++;
#In the following %textinfo stores word, in which text it occurs and its
#frequency in the text.

Directory and file management 173

45. $textinfo{$word}.="$textname,$wordfreq;";
#In the following, the value of $cumuvoc{$word} contains cumulative
#word frequency, word range, in which text the word occurs and the fre-
#quency in the text. The comma is used for separating $textinfo{$word}in
#sub printrange.
46. $cumuvoc{$word}=expand("$cumufreq\t$wordrange{$word},$textinfo

{$word}");
47. }
48. }
49. }
50. sub printrange{
#Statements 51—53 change number of lines to 4000 in page so that word-
#range.txt won’t be divided into many pages, but only one page with a page
#top.
51. $gethandle=select Q;
52. $==4000;
53. select $gethandle;
#The following are for page heading.
54. $pageheading="WORD RANGE INFORMATION";
55. format Q_TOP=
56. #This line is empty.
57. ---
58. @||
59. $pageheading
60. @>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
61. #This line is empty.
62. WORD FREQ RANGE WORD FREQ IN TEXTS
63. ---
64. .
65. foreach $wordinfo(sort(keys(%cumuvoc))){
#The following measures the position of comma.
66. $commapos=index($cumuvoc{$wordinfo},",");
#The following gets word frequency and word range and assigns it to
#$freq_range.
67. $freq_range=substr($cumuvoc{$wordinfo},0,$commapos);
#The following gets the texts in which a word occurs and its frequency in
#each of these texts. 1000 ensures that all the contents from 1 position after
#the comma are included and assigned to $rangeinfo.
68. $rangeinfo=substr($cumuvoc{$wordinfo},$commapos+1,1000);
69. format Q=
70. @<<<<<<<<<<<<<<<<<<<<<<<<@<<<<<<<<<<^<<<<<<<<<<<<<

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
71. $wordinfo,$freq_range,$rangeinfo

Directory and file management 174

72. ~~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<

73. $rangeinfo
74. .
75. write Q;
76. }
77. }
78. sub getvocgrowth{
79. @vocgrowth=%cumuvoc;
#@vocgrowth contains words and their frequencies, so vocabulary size can
#be obtained by the total number of elements of @vocgrowth divided by 2.
80. $vocgrowth=($#vocgrowth+1)/2;
81. $cumutextsize+=$textsize; #get cumulative text size
82. $pageheading="VOCABULARY GROWTH INFORMATION";
83. format T_TOP=
84. #This line is empty.
85. @|||
86. $pageheading
87. #This line is empty.
88. TEXTS TEXTSIZE VOCSIZE CUMUTEXTSIZE

VOCGROWTH
89. ---
90. .
91. format T=
92. @<<<<<<<<<<<<<<@<<<<<<<<<<<<<<@<<<<<<<<<<<<<<@<<

<<<<<<<<<<<<@<<<<<<<<<<<<<<
93. $textname,$textsize,$textvocsize,$cumutextsize,$vocgrowth
94. .
95. write (T);
96. }

Part of wordrange.txt is shown below:

 WORD RANGE INFORMATION

WORD FREQ RANGE WORD FREQ IN TEXTS

A 687 20 Alice1,34;Alice2,31;Alice3,33;
 Alice4,41;Alice5,33;Alice6,47;
 Alice7,32;Alice8,49;Alice9,40;
 Alice10,44;Alice11,23;Alice12,
 35;Alice13,33;Alice14,32;Alice

Directory and file management 175

 15,33;Alice16,33;Alice17,36;Al
 ice18,28;Alice19,28;Alice20,22;
Abide 1 1 Alice9,1;
Able 1 1 Alice2,1;

Exercises

1. Do the following:
a. Create a directory called test with a Perl statement and then removes the

directory with another Perl statement.
b. Put all the files with the txt extension in d:\perllesson\texts in an array and

then output the names of these files to a file.
c. Use the opendir, readir and closedir functions to output all the file names in

d:\perllesson\progs to a file.

2. Centre-justify poem.txt using the formatting symbol for centre-justification.

3. Write a program to compute vocabulary coverage of bncwordlist2.txt over
each of the 20 alice texts. The output file coverage.txt should contain the
following for each of the texts: text name, text length, vocabulary size, number of
lemmas covered, number of lemmas uncovered, coverage rate, and the uncovered
lemmas. These data should be arranged in seven left-justified columns. At the
end of coverage.txt there should be the average coverage. The output file should
contain a page head. In addition, the program should also make a wordlist of
covered words with frequency for each of the text, and a wordlist of all the
uncovered words.

4. Write a program to get the following information on each of the 20 alice text
chunks: text name, text size, vocabulary size, number of hapaxes, number of dis
legomena and number of tris legomena, hapax/vocabulary ratio, dis
legomena/vocabulary ratio, tris legomena/vocabulary ratio, TTR and average
word length in letters. Arrange these data in 11 columns, with character data and
integer numbers left-justified and decimal numeric data centre-justified around
the decimal point.

5. Vocabulary overlap refers to the number of identical lemmas shared between
two texts. Write a program that divides the 20 alice text chunks into 10 random
pairs and computes the vocabulary overlaps of these ten text pairs. The results of
the program should be put in the following files: ten wordlists containing shared
words of each text pair; a file containing the following: name of the texts of each
text pair and their respective length and vocabulary size, and the vocabulary
overlap. The file should have a page top, and at the bottom of the page give the

Directory and file management 176

average vocabulary overlap and the standard deviation of the overlap, which is
given by the following:

N
xx

S ∑ −
=

2)(
,

where S is the standard deviation, x the vocabulary overlap of a text pair, x the
average vocabulary overlap of the 10 text pairs, N the number of pairs.

Appendix
Model answers to the exercises

Exercises of Chapter 2

2.
compound.pl
print "\n";
$cn1=(30.2693*(1**-2.3212));
$cn2=30.2693*2**-2.3212;
$cn3=30.2693*3**-2.321;
$cn4=30.2693*4**-2.3212;
$cn5=30.2693*5**-2.3212;
print ("$cn1\n$cn2\n$cn3\n$cn4\n$cn5\n");

3.
tuldava.pl
$v=1000000*2.71828**(-0.009152*log(1000000)**2.3057);
print("$v\n");

4.
arclength.pl
$arclength=((1635-872)**2+1)**(1/2)+((872-825)**2+1)**(1/2)+((825-
730)**2+1)**(1/2);
print $arclength;

5.
math2.pl
$result=(100938.3*2248**3-7754/5.56+(3400/2578)**(1/4)*(1102-331)**(12-
8));
print("$result\n");

Exercises of Chapter 3

1.
combinelines.pl
#This program combine lines into a paragraph
open(F,"poem.txt")or die("File can't be opened.\n");
open(W, ">result.txt")or die("File can’t be created.\n");
while ($line=<F>){
chomp $line;
$cumulines.=$line.' ';
}

Model answers to the exercises 178

print (W $cumulines);
close(F);
close(W);

2.
rjustify.pl
#This program right-justifies bncwordlist.txt
open(F,"bncwordlist.txt")or die("File can't be opened.\n");
open(W, ">result.txt")or die("File can’t be created.\n");
while ($word=<F>){
$wordnumber++;
$digitlength=length($wordnumber);
$wordlength=length($word);
$leftspaces=" "x(30-($wordlength+$digitlength));
$word=$wordnumber.$leftspaces.$word;
print(W $word);
}
close(F);
close(W);

3.
cjustnumber.pl
#This program justifies poem.txt and add line numbers
open(F,"poem.txt")or die("File can't be opened.\n");
open(W, ">result.txt")or die("File can’t be created.\n");
while ($line=<F>){
$linenumber++;
$linelength=length($line);
$cumulinelength+=$linelength;
$leftspaces=" "x(40-$linelength/2);
$cline=$leftspaces.$line;
if ($linenumber==1){
print (W $cline);
}elsif(ord $line==45){
print(W $cline);
}else{
$cline=($linenumber-1).$cline;
print(W $cline);
}
}
$average=$cumulinelength/($linenumber-2);
print(W "\n"."\n"."The average line length of the poem is: $average");
close(F);
close(W);

Model answers to the exercises 179

4.
wordlength.pl
#This program computes word length in letters
open(F,"bncwordlist.txt")or die("File can't be opened.\n");
open(G, ">length3.txt")or die("File can’t be created.\n");
open(H, ">length4.txt")or die("File can’t be created.\n");
open(I, ">length5.txt")or die("File can’t be created.\n");
open(J, ">length6.txt")or die("File can’t be created.\n");
open(K, ">length7.txt")or die("File can’t be created.\n");
open(L, ">length8.txt")or die("File can’t be created.\n");
open(M, ">length9.txt")or die("File can’t be created.\n");
open(N, ">length10.txt")or die("File can’t be created.\n");
open(O, ">over10.txt")or die("File can’t be created.\n");
open(P, ">wordinfo.txt")or die("File can’t be created.\n");
while ($word=<F>){
$wordnumber++;
chomp $word;
$wordlength=length($word);
$cumulength+=$wordlength;
if ($wordlength<=3){
$wordlength3++;
print(G "$word\n");
}elsif($wordlength==4){
$wordlength4++;
print(H "$word\n");
}elsif($wordlength==5){
$wordlength5++;
print(I "$word\n");
}elsif($wordlength==6){
$wordlength6++;
print(J "$word\n");
}elsif($wordlength==7){
$wordlength7++;
print(K "$word\n");
}elsif($wordlength==8){
$wordlength8++;
print(L "$word\n");
}elsif($wordlength==9){
$wordlength9++;
print(M "$word\n");
}elsif($wordlength==10){
$wordlength10++;
print(N "$word\n");
}else{

Model answers to the exercises 180

$over10++;
print(O "$word\n");
}
}
$average=$cumulength/$wordnumber;
print (P " LEXICAL INFORMATION ON BNCWORDLIST\n");
print (P "The total number of words: $wordnumber\n");
print (P "The average word length: $average\n");
print (P "The total number of words with length 1--3: $wordlength3\n");
print (P "The total number of words with length 4: $wordlength4\n");
print (P "The total number of words with length 5: $wordlength5\n");
print (P "The total number of words with length 6: $wordlength6\n");
print (P "The total number of words with length 7: $wordlength7\n");
print (P "The total number of words with length 8: $wordlength8\n");
print (P "The total number of words with length 9: $wordlength9\n");
print (P "The total number of words with length 10: $wordlength10\n");
print (P "The total number of words with length over 10: $over10\n");
close(F);
close(G);
close(H);
close(I);
close(J);
close(K);
close(L);
close(M);
close(N);
close(O);
close(P);

5.
reversegetc.pl
#This program turns ASCII codes into characters
open(F,"result.txt") or die("Can't open file.\n");
read(F,$text,620000);
open(W,">test.txt") or die("Can't create file.\n");
$textlength=length($text);
while(length($text)>0){
$position=index($text,' ')+1;
$code=substr($text,0,$position);
$text=substr($text,$position,$textlength);
$code=chr $code;
print W "$code";
}
close(F);

Model answers to the exercises 181

close(W);

Exercises of Chapter 4

1.
Consonant1.pl
#This program computes the number of words with five or more consecutive
#consonant letters
open(F,"bncwordlist.txt") or die ("File can't be opened.\n");
open(W,">result.txt")or die ("Can't create file.\n");
while($word=<F>){
if($word=~m/[bcdfghjklmnpqrstvwxyz][bcdfghjklmnpqrstvwxyz]
[bcdfghjklmnpqrstvwxyz][bcdfghjklmnpqrstvwxyz][bcdfghjklmnpqrstvwxyz]/x)
{
$number++;
print W $word;
}
}
print(W "The total number of words that have five consecutive consonant letters
or more is: $number.\n");
close(F);
close(W);

2.
getmake.pl
#This program counts the number of make and its variants.
open(F,"adventure.txt") or die ("File can't be opened.\n");
read(F,$text,150000);
open(W,">result.txt")or die ("Can't create file.\n");
$text=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
$number=($text=~s/ ma((de)|(k(e|es|ing))) //gi);
print (W "The total number of different word forms of MAKE is: $number");
close(F);
close(W);

3.
removepos.pl
#This program removes POS tags
open(F,"tagged.txt") or die ("File can't be opened.\n");
read(F,$text,200000);
open(R,">result.txt") or die ("File can't be created.\n");
$text=~s/<.*?>\n//g;
$text=~s/_.+? / /g;

Model answers to the exercises 182

print (R $text);
close(F);
close(R);

4.
wlengthxml.pl
#This program removes the xml tags and computes word length in syllables
open(F,"text.xml")or die("File does not exist!\n");
read(F,$text,23000);
open(R,">result.txt") or die("File can't be created!\n");
$text=~s/.*ALICE.*ALICE/ALICE/;
$text=~s/<.*?>/ /g;
$text=~s/ \n//g;
$text=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
$text=~s/ $//g;
$text=~s/ /\n/g;
print R $text;
close(F);
close(R);
#The following is similar to countsyllable.pl
open(S,"result.txt") or die("Can't create file.\n");
open(W,">syllainfo.txt") or die("Can't create file.\n");
while($word=<S>){
$word=lc($word);
$wordnumber++;
$word2=$word;
$sylnumber=($word2=~s/[aeiouy]+/z/g);
$sylnumber++ if($sylnumber==0 or $word=~m/sm$/);
if($word=~m/tively$/ or $word=~m/ial$/ or $word=~m/[^eioa]e$/){
unless($word=~m/ple$/ or $word=~m/ble$/ or $word=~m/gle$/ or $word eq
"the\n" or $word eq"she\n" or $word eq "he\n" or $word eq "be\n"){
$sylnumber--;
}
}
print (W "$sylnumber\t$word");
$cumusylnumber+=$sylnumber;
$sylnumber=0;
}
$average=$cumusylnumber/$wordnumber;
print (W "The total number of words is: $wordnumber\n");
print (W "The average word length in syllables is: $average\n");
close(S);
close(W);

Model answers to the exercises 183

5.
removetag.pl
#This program removes POS tags, double quotes and separates phrases in
#poswords.txt
open(F,"poswords.txt") or die ("File can't be opened.\n");
read(F,$word,12000);
open(R,">result.txt") or die ("File can't be created.\n");
$word=~s/ /\n/g; #replace spaces with line break
$word=~s/.+?"//g; #remove POS tags, which all have " on the right
$word=~s/"//g;#remove remaining " on the left
$word=~s/\n+/\n/g; #keep only one linebreak between each word
$word=~s/\n$//; #remove the empty line at the end of $word
$breaknumber=($word=~s/\n/\n/g);#count number of linebreaks
$wordnumber=$breaknumber+1; #the last word of $word has no line break, so 1
must be added
$totallength=length($word)-$breaknumber;
$average=$totallength/$wordnumber;
print R $word;
print (R "The total number of words is: $wordnumber.\n");
print (R "The average word length in letters is: $average.");
close(F);
close(R);

Exercises of Chapter 5

1.
markbebe.pl
#This program extracts BE and its variants from a text
open(F,"adventure.txt") or die ("File can't be opened.\n");
read(F,$text,150000);
open(W,">result.txt")or die ("Can't create file.\n");
$wordnumber=($text=~s/\bbe(ing)?\b|\bwas\b|\bwere\b|\bam\b|\bis\b|\bare\b/***
$&***/gi);
print (W "The number of the different word forms of BE is:
$wordnumber\n$text");
close(F);
close(W);

2.
getassoon.pl
#This programs gets AS SOON AS from a text.
open(F,"adventure.txt")or die ("File can't be opened\n");
read(F,$text,150000);

Model answers to the exercises 184

open(R,">result.txt") or die("File can't be created!\n");
$text=~s/\n//g;
$text=~tr/ / /s;
$string="AS SOON AS";
print (R "$string\n");
while ($text=~m/\b$string\b/i){
$getassoon=$text;
$number++;
$getassoon=~s/(.*?\b$string\b.*?[.?;!]).*/\1/i;
$getassoon=~s/.*[.?;!](.*\b$string\b.*)/\1/i;
$text=~s/.*?\b$string\b.*?[.?;!]//i;
$getassoon=~s/\b$string\b/ **$string** /i;
print (R " $number\t $getassoon\n");
$getassoon=$text;
}
close(F);
close(R)

3.
collocation.pl
#This program makes collocation of go and its variants in a text using regular
#expressions.
open(F,"adventure.txt");
open(R,">result.txt") or die("File does not exist!\n");
read(F,$text,150000);
$text=~s/[\t\r\n\/\(\)'`]//g;
$text=~tr/ / /s;
$text='* * * * *'.$text.' * * * * * ';
while ($text=~m/\bwent\b|\bgone\b|\b(go(ing|es)?)\b/i){
$collo=$text;
$collonumber++; #number of collocations
#In the following statement the left context is in obtained with ((\S+\s){3,5}).
#Note the use of {3,5} here because sometimes there are only 3 or 4 words left to
#form the left contenxt. The key word is extracted with
#((\bwent\b|\bgone\b|\b(go(ing|es)?)\b). {0,2} is used because there are cases of 2
#puncs together after the key word.The right context is in the 7th brackets, back
#referenced by $7. $1$3$7 gets the left context, the key word and the right
#context.
$collo=~s/.*?((\S+\s){3,5})((\bwent\b|\bgone\b|\b(go(ing|es)?)\b)[,.?:;"!]{0,2})\s(
(\S+\s){3,5})/$1$3$7/i;
$leftclength=length($1);
$centrejustify=' 'x(45-$leftclength);
$collo=$centrejustify.$1.' '.(uc$3).' '.$7;
#Pay attention to the outer brackets. Without it only a fraction of the keywords

Model answers to the exercises 185

#would be picked
$text=~s/.*?((\S+\s){3,5}\bwent\b|\bgone\b|\b(go(ing|es)?)\b)[,.?:;"!]{0,2}//i;
print (R "$collo\n");
}
print (R "The number of GO and its different word forms are: $collonumber\n");
close(F);
close(R);

4.
picknonwords.pl
#This program picks out-of-dictionary words and puts them into non-word.txt,
#and outputs in-dictionary words in result.txt. Manual check should be done and
#more statements can be added to reduce errors.
open(F,"bncwordlist.txt") or die ("Can't open file.\n");
open(R,">result.txt") or die("File can't be created.\n");
open(W,">nonword.txt") or die("File can't be created.\n");
#The following statements pick non-words:
while ($line=<F>){
if ($line=~m/[0-9]+/g){
print W $line;
}elsif($line=~m/^([aeiouy])\1|([aeiouy])\1\1|[aeouy]{4}/gi){
print W $line;
}elsif($line=~/^([bcdfghjklmnpqstvwxyz])\1|([bcdfghjklmnpqstvwxyz])\1\1/ig){
print W $line;
}elsif($line=~/([bcdfghjkmnpqrtvwxyz])\1$/ig){
print W $line;
}elsif($line=~/([bcdfghjklmnpqrtvwxz]){5,}/ig){
print W $line;
}elsif($line=~/^([bcdfgjkmnqtvxz]){2,}/ig){
print W $line;
}elsif($line=~/^[plhryw]([bcdfgjkmqtvxz])/ig){
print W $line;
}elsif($line=~/^[bcdfgjmqtvxzlywhr][psn]|[bcdfghjklmnpqrstvwxzl]{4,}$/ig){
print W $line;
}else{ #the following prints out in-dictionary words
print R $line;
}
}
close(F);
close(R);
close(W);

5.
getwordtype.pl

Model answers to the exercises 186

#This program makes an unsorted word type list. But it's very slow.
open(F,"adventure.txt");
open(R,">result.txt") or die("file does not exist!\n");
read(F,$text,150000);
$text=~s/[\n.?,\[\]()*:!;`'"]/ /g;
$text=~s/\-/ /g;
while (length($text)>1){
$text=~s/^ //;
$text=~tr/ / /s;
$textb=$text;#$textb is destroyed in the following statement
$textb=~s/(\b\w+\b).*/$1/i;
$word=$1;#$1 is changed into nothing in the following statement
#In the following all the words identical with $1 are removed from $text, making
#it shorter and shorter.
$wordfreq=($text=~s/\b$1\b//gi);
print (R "$wordfreq\t$word\n");
}
close(F);
close(R)

Exercises of Chapter 6

4.
bigramfreq.pl
#This program makes frequencied bigrams
open(F,"adventure.txt")or die("file can't be opened.\n");
read(F,$text,150000);
use Text::Tabs;
$tabstop=30;
$text=~s/([.,`:?!";])+/ $&/g;
$text =~s/\n+/ /g;
$text =~tr/ / /s;
$text=~s/^ //g;
@wordlist=split(/ /,$text);
for($i=0;$i<$#wordlist;$i++){
for($j=0;$j<2;$j++){
$bigram.=" ".$wordlist[$i];
$i++;
}
push(@temp,$bigram);
$i-=2;
$bigram="";
}

Model answers to the exercises 187

@bigramarray=sort(@temp);
$freq=1;
for($i=0;$i<$#bigramarray+1;$i++){
if($bigramarray[$i+1]eq $bigramarray[$i]){
$freq++;
}else{
$bigram_freq.=expand($bigramarray[$i]."\t".$freq."\n");
$freq=1;
}
}
open(W,">bigramfreq.txt") or die("Can't create file.\n");
print(W "$bigram_freq\n");
close(F);
close(W);

5.
wordlengthfreq.pl
#This program computes word length distribution
use Text::Tabs;
$tabstop=30;
open(F,'adventure.txt') or die("File does not exist!\n");
open(W,'>wordlength.txt') or die ("Unable to create file!\n");
read(F,$text,150000);
$text=~s/[.?,"':;!`*_\n \(\)\-\[\]]/ /g;
$text=~tr/ / /s;
$text=~s/^ | $//g;
@temp1=split(/ /,$text); #get words
$wordnumber=$#temp1+1;
for($i=0;$i<$wordnumber;$i++){
push(@temp2,length(@temp1[$i]));
}
@wordlength=sort({$a<=>$b}@temp2);
$freq=1;
for($i=0;$i<$#wordlength+1;$i++){
$cumulength+=$wordlength[$i]; #get cumulative word length
if($wordlength[$i+1]eq $wordlength[$i]){
$freq++;
}else{
$wordlength_freq=$wordlength[$i]."\t".$freq;
print W expand("$wordlength_freq\t\n");
$freq=1;
}
}
$average=$cumulength/$wordnumber;

Model answers to the exercises 188

print (W "____________________\n\n");
print (W "The total number of word tokens is: $wordnumber\n");
print (W "The average word length is: $average");
close(F);
close(W);

Exercises of Chapter 7

1.
(1)
getsamewords.pl
#This program turns $text1 and $text2 into two hashes, outputs the words shared
#by the two texts with their respective frequencies
$text1="people 6 book 14 read 40 linguistics 13 Perl 12 journal 14 student 6
program 20";
$text2="journal 12 student 12 teacher 6 Perl 10 program 18 book 5 do 40
computer 20";
%hash1=split(/ /,$text1);
%hash2=split(/ /,$text2);
foreach $word(keys %hash1){
if(exists($hash2{$word})){
$hash3{$word}=$hash1{$word}.":".$hash2{$word};
delete($hash1{$word});
delete($hash2{$word});
}
}
foreach $word(keys %hash3){
print "$word\t$hash3{$word}\n";
}

(2)
descendfreq.pl
#This program turns $text1 and $text2 into two hashes, combines the two hashes
#and then outputs the words with the frequencies sorted in the descending order.
$text1="people 6 book 14 read 40 linguistics 13 Perl 12 journal 14 student 6
program 20";
$text2="journal 12 student 12 teacher 6 Perl 10 program 18 book 5 do 40
computer 20";
%hash1=split(/ /,$text1);
%hash2=split(/ /,$text2);
foreach $word(keys %hash1){
$hash2{$word}+=$hash1{$word};
}

Model answers to the exercises 189

while(($word,$freq)=each(%hash2)){
push(@wordlist,"$freq\t$word");
}
foreach $freq_word(sort{$b<=>$a}@wordlist){
print "$freq_word\n";
}

(3)
reverse.pl
#This program combines two hashes and then reserves the new hash, turning its
#keys as values and values as keys.
$text1="people 6 book 14 read 40 linguistics 13 Perl 12 journal 14 student 6
program 20";
$text2="journal 12 student 12 teacher 6 Perl 10 program 18 book 5 do 40
computer 20";
%hash1=split(/ /,$text1);
%hash2=split(/ /,$text2);
foreach $word(keys %hash1){
$hash2{$word}+=$hash1{$word};
}
foreach $word(keys %hash2){
$value=$hash2{$word};
$reversehash{$value}.=$word.',';
}
foreach $word(sort{$a<=>$b} keys %reversehash){
print "$word\t$reversehash{$word}\n";
}

(4)
freqspectrum.pl
#This programs combines two hashes into a new one and then makes a frequency
#spectrum.
$text1="people 6 book 14 read 40 linguistics 13 Perl 12 journal 14 student 6
program 20";
$text2="journal 12 student 12 teacher 6 Perl 10 program 18 book 5 do 40
computer 20";
%hash1=split(/ /,$text1);
%hash2=split(/ /,$text2);
foreach $word(keys %hash1){
$hash2{$word}+=$hash1{$word};
}
foreach $freq(values %hash2){
$spectrum{$freq}++;
}

Model answers to the exercises 190

foreach $freq(sort{$a<=>$b}keys %spectrum){
print "$freq\t$spectrum{$freq}\n";
}

2.
lemmatizebe.pl
#This program lemmatizes the different word forms of be.
$text="The word be has the following word forms: am, is, are, was, were, and
being";
$lemma="am be is be are be was be were be being be";
@wordarray=split(/[.,:] | /,lc $text);#there’s a space after] and before |
%lemmahash=split(/ /,$lemma);
foreach $word(@wordarray){
$wordhash{$word}++;
}
foreach $wordform(keys %lemmahash){
if(exists($wordhash{$wordform})){
$lemma=$lemmahash{$wordform};
$lemmago{$lemma}+=$wordhash{$wordform};
delete($wordhash{$wordform});
}
if(exists($wordhash{$lemma})){
$lemmago{$lemma}+=$wordhash{$lemma};
delete($wordhash{$lemma});
}
}
%wordlist=(%wordhash,%lemmago);
foreach $word(sort keys %wordlist){
print "$word\t$wordlist{$word}\n";
}

3.
lengthgroup.pl
#This program makes a wordlist for adventure.txt, with words grouped according
#to their length in letters.
open(F,'adventure.txt') or die("File does not exist!\n");
open(W,'>wordlist.txt') or die ("Unable to create file!\n");
read(F,$text,150000);
use Text::Tabs;
$tabstop=20;
$text=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
$text=~s/^ | $//g;
@temp=split(/ /,lc $text);
foreach $word(@temp){

Model answers to the exercises 191

$wordnumber++;
$cumulength+=length($word);
$wordlist{$word}++;
}
#The following assign word and its frequency to $word_freq, separated by a
#comma, then put it to a new hash $word_freq_length, with $word_freq as key
#and $wordlength as value.
while(($word,$freq)=each(%wordlist)){
$wordlength=length($word);
$word_freq=$word.','.$freq.'; ';
$word_freq_length{$word_freq}=$wordlength;
}
#The following create a new hash %lengthgroup, in which the keys are length
#and values words with such length.
foreach $key(sort keys %word_freq_length){
$keylength=$word_freq_length{$key};#assign word length to $keylength
#The following statement combines words of the same length as values, with
#the length as key
$lengthgroup{$keylength}.=$key;
}
foreach $lengthclass(sort{$a<=>$b}keys %lengthgroup){
#The following statement counts number of words with the same length:
$wordnumber2=($lengthgroup{$lengthclass}=~s/\;/;/g);
$cumunumber+=$wordnumber2;
print W $lengthclass."-LETTER WORDS"."\n";
print W $lengthgroup{$lengthclass}.";". "\n";
print W "The total number of words with length $lengthclass is:
$wordnumber2\n";
print W "\n";
}
$average=$cumulength/$wordnumber;
print W "THE TOTAL NUMBER OF WORD TYPE IS: $cumunumber\n";
print W "THE AVERAGE WORD LENGTH IS: $average";
close(F);
close(W);

4.
yulesk.pl
#This program computes Yule's K for adventure.txt
open(F,"adventure.txt") or die("Can't open file.\n");
read(F,$text,150000);
$text=~tr/[.,?";`':!()><+&^%*{}_=~\/\|\\\n\t\[\]\@\#\$\-]/ /s;
$text=~s/^ | $//g;
@temp=split(/ /,lc $text);

Model answers to the exercises 192

foreach $word(@temp){
$wordnumber++;
$wordlist{$word}++;
}
#The following get frequency spectrum
foreach $freq(values %wordlist){
$spectrum{$freq}++;
}
#The following compute Yule's K
foreach $freqclass(sort({$a<=>$b}keys%spectrum)){
$cumu+=$freqclass**2*$spectrum{$freqclass};
}
$k=10000*(($cumu-$wordnumber)/$wordnumber**2);
print $k;
close(F);

Exercises of Chapter 8

1.
scalarrefex.pl
#This program uses references to output the contents of $sentence1 and
$sentence2.
$sentence1= "Alice was beginning to get very tired of sitting by her sister on the
bank and of having nothing to do";
$sentence2="In another moment down went Alice after it, never once
considering how in the world she was to get out again.";
$ref1=\$sentence1;
$ref2=\$sentence2;
print "$$ref1\n";
print "$$ref2";

2.
arrayrefex.pl
#This program uses a reference to output the contents of an array.
$array[0]="apple";
$array[1]="peach";
$array[2]="orange";
$array[3]="banana";
$array[4]="apricot";
$array[5]="grape";
$ref=\@array;
foreach $word(sort @$ref){
print("$word\n");

Model answers to the exercises 193

}

3
hashrefex.pl
#This program uses a key of a hash as a reference for an array, and outputs the
#contents of the array using the reference.
$array[0]="apple";
$array[1]="peach";
$array[2]="orange";
$array[3]="banana";
$array[4]="apricot";
$array[5]="grape";
$hash{fruit}=\@array;
foreach $word(sort @{$hash{fruit}}){
print "$word\n";
}

4.
wordlengthsub.pl
#This program uses three subroutines to create nine output files (from the file
#handles G to O) and outputs words of different length to files holding words of
#specified length, and word length information to wordinfo.txt.
open(F,"bncwordlist.txt")or die("File can't be opened.\n");
openoutput();
while ($word=<F>){
$wordnumber++;
chomp $word;
$wordlength=length($word);
$cumulength+=$wordlength;
for($i=3;$i<11;$i++){
if ($wordlength<=$i and $i==3){
$wordlength{$i}++;
printword();
}elsif($wordlength>=$i and $i==10){
$wordlength{10}++;
printword();
}elsif($wordlength==$i and $i>3 and $i<10){
$wordlength{$i}++;
printword();
}
}
}
printwordinfo();
sub openoutput{

Model answers to the exercises 194

for($j=3;$j<11;$j++){
$character=chr (68+$j);
$filehandle=$character;
$filename="length".$j.".txt";
open($filehandle, ">$filename")or die("File can’t be created.\n");
}
open(P, ">wordinfo.txt")or die("File can’t be created.\n");
}
sub printword{
$character=chr (68+$i);
$filehandle=$character;
print $filehandle "$word\n";
}
sub printwordinfo{
$average=$cumulength/$wordnumber;
print (P " LEXICAL INFORMATION ON BNCWORDLIST\n");
print (P "The total number of words: $wordnumber\n");
print (P "The average word length: $average\n");
for($i=3;$i<11;$i++){
print (P "The total number of words with length $i: $wordlength{$i}\n");
$character=chr (68+$i);
$filehandle=$character;
close($filehandle);
}
close(P);
}

5.
wordtypemodule.pl
#This program combines identical array elements and computes their frequency
#using an exporter module processarray.pm. The program also calls
#ridcharacter.pm in 8.5.2.
use processarray;
use ridcharacter;
open(F,'adventure.txt') or die("File does not exist!\n");
open(W,'>wordlist.txt') or die ("Unable to create file!\n");
read(F,$text,150000);
cleantext(\$text);
@wordarray=split(/ /,lc $text);
$wordnumber=$#wordarray+1;
total(\@wordarray);
foreach $word(@wordarray){
$typenumber++;
print W "$word\n";

Model answers to the exercises 195

}
print (W "____________________\n\n");
print (W "The total number of word tokens is: $wordnumber\n");
print (W "The total number of word types is: $typenumber\n");
close(F);
close(W);

processarray.pm
package processarray;
use Text::Tabs;
$tabstop=30;
use Exporter;
@ISA=("Exporter");
@EXPORT=("total");
sub total{
my(@array,$temp,$i,$word,$word_freq,$freq);
$temp=shift();
@array=sort @$temp;
$freq=1;
for($i=0;$i<$#array+1;$i++){
if($array[$i+1]eq @array[$i]){
$freq++;
}else{
$word_freq=expand @array[$i]."\t".$freq;
push(@arrayfreq,$word_freq);
$freq=1;
}
}
@$temp=@arrayfreq;
}
1;

Exercises of Chapter 9

2.
cjustify2.pl
#This program centre-justifies poem.txt using centre-justification symbols.
open(F,"poem.txt") or die ("Can't open file.\n");
open(W,">result.txt") or die ("Can't create file.\n");
while($line=<F>){
format W=
@|||
$line

Model answers to the exercises 196

.
write (W);
}
close(F);
close(W);

3.
coverage.pl
#This program computes vocabulary coverage of bncwordlist2.txt over each of
#the 20 alice text chunks.
use Lemmatizer;
open(F,'bncwordlist2.txt')or die("File can't be opened.\n");
open(T,'coverage.txt') or die ("Can't create file.\n");
open(U,'uncovered.txt') or die ("Can't create file.\n");
read(F,$text1,3600000);
$text1=~tr/ / /s;
%bncwordlist=split(/[\n]/,$text1);
for ($i=1;$i<21;$i++){
$infilename='alice'.$i.'.txt';
$outputfile='>covered'.$i.'.txt';
$textname='Alice'.$i;
system(cls);
print("Processing file: $i\n");
$openfile1=q/open(R,"$infilename") or die("Can't open files.\n")/;
$openfile2=q/open(W,"$outputfile") or die ("can't create file.\n")/;
eval $openfile1;
eval $openfile2;
read(R,$text2,10000);
($wordlist,$textsize)=lemmatize($text2);
$pageheading="VOCABULARY COVERAGE";
format T_TOP=
@|||
$pageheading

TEXT TSIZE VSIZE COV UNCOV COVERAGE WORDS
UNCOVERED

.
foreach $word(sort keys %$wordlist){
$vocsize++;
if (exists($bncwordlist{$word})){
format W=
@<<<<<<<<<<<<<<<<<<<<<<<<@<<<<<<
$word,$wordlist->{$word}

Model answers to the exercises 197

.
write W;
$covernumber++;
}else{
$uncovered.="$word,$wordlist->{$word};";
$uncoverlist{$word}++;
$uncovernumber++;
}
}
$coverage=$covernumber/$vocsize;
$cumucoverage+=$coverage;
format T=
@<<<<<<<<<@<<<<<<<@<<<<<<<@<<<<<<<@<<<<@##.####
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$textname,$textsize,$vocsize,$covernumber,$uncovernumber,$coverage,$uncov
ered
 ~~^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$uncovered
.
write(T);
print (W "_____________________________________\nTotal number of
covered words in text: $covernumber");
$vocsize=0;
$covernumber=0;
$uncovernumber=0;
$uncovered='';
}
$averagecov=$cumucoverage/20;
print (T
"__
________________\n");
print (T "Average coverage: $averagecov");
foreach $word(sort keys %uncoverlist){
$cumuncovnumber++;
print (U "$word\n");
}
print (U "_____________________________________\nThe total number of
uncovered words: $cumuncovnumber");
close(F);
close(R);
close(T);
close(U);
close(W);

Model answers to the exercises 198

4.
lexinfo.pl
#This program gets the following information on each of the 20 alice text
#chunks: text name, text size, vocabulary size, number of hapaxes, number of dis
#legomena and number of tris legomena, hapax/vocabulary ratio, dis legomena/
#vocabulary ratio, tris legomena/vocabulary ratio, TTR and average word length
#in letters.
use Lemmatizer;
open(T,'>lexinfo.txt') or die ("Can't create file.\n");
for ($i=1;$i<21;$i++){
$infilename='alice'.$i.'.txt';
$textname='Alice'.$i;
system(cls);
print("Processing file: $i\n");
$openfile=q/open(R,"$infilename") or die("Can't open files.\n")/;
eval $openfile;
read(R,$text,10000);
($wordlist,$textsize)=lemmatize($text);
$pageheading="LEXICAL INFORMATION";
format T_TOP=

@|||
$pageheading

 TEXT TSIZE VSIZE H DIS TRIS H/V DIS/V TRIS/V TTR
AVERLENGTH
--
.
foreach $word(sort keys %$wordlist){
$vocsize++;
#In the following, $cumuwordlength gets the cumulative word length of every
#word in text.
$cumuwordlength+=length($word)*$wordlist->{$word};
if ($wordlist->{$word}==1){
$hapnum++;
}elsif($wordlist->{$word}==2){
$disnum++;
}elsif($wordlist->{$word}==3){
$trisnum++;
}
}
$hv=$hapnum/$vocsize;
$disv=$disnum/$vocsize;
$trisv=$trisnum/$vocsize;

Model answers to the exercises 199

$ttr=$vocsize/$textsize;
$averlength=$cumuwordlength/$textsize;
format T=
@<<<<<<<@<<<<<@<<<<<<@<<<<<@<<<<@<<<@##.####@##.####@##
.####@##.####@##.####
$textname,$textsize,$vocsize,$hapnum,$disnum,$trisnum,$hv,$disv,$trisv,$ttr,$
averlength
.
write T;
$vocsize=0;
$textsize=0;
$hapnum=0;
$disnum=0;
$trisnum=0;
$cumuwordlength=0;
}
print (T "--");
close(R);
close(T);

5.
overlap.pl
#This program computes vocabulary overlap between ten pairs of alice text
#chunks and overlap standard deviation.
#overlap.txt stores text names, text size, vocabulary size, lexical overlap,
#average overlap and overlap standard deviation.
open(T,'>overlap.txt') or die ("Can't open file.\n");
use Lemmatizer;
#In the following, alice1--alice20 are put in %filename, with 1--20 as
#keys and text names as values.
for($i=1;$i<21;$i++){
$filename{$i}="alice".$i.".txt";
}
#The following generates page head for overlap.txt.
$pageheading="LEXICAL OVERLAP";
format T_TOP=

@||
$pageheading

 TEXTA:TEXTB TEXTSIZEA:TEXTSIZEB
VOCSIZEA:VOCSIZEB OVERLAP

.

Model answers to the exercises 200

#In the following alice1--20 are inputted in a random order.
foreach $file(keys %filename){
$textname=$filename{$file};#alicen.txt
open(F,"$textname") or die ("Can't open file.\n");
read(F,$text,100000);
$j++;#for getting pairs of texts
if ($j==1){
$textname1=$textname; #first text of a text pair
($wordlist1,$textsize1)=lemmatize($text);
@wordlist1=%$wordlist1;
$vocsize1=($#wordlist1+1)/2;#get vocabulary size of first text
#In the following, if $j=2, start compairing 2 texts and output results.
}else{
$textname2=$textname;
$filenumber++; #for naming wordlists of shared words
$outfile='overlapword'.$filenumber.".txt";
open(W,">$outfile") or die ("Can't create file.\n");
print W "$textname1 : $textname2\n------------------------\n"; #wordlist heading
system(cls);
print "Processing $textname1 : $textname2\n";
($wordlist2,$textsize2)=lemmatize($text);
@wordlist2=%$wordlist2;
$vocsize2=($#wordlist2+1)/2;#get vocabulary size of second text
#The following output wordlists of shared words and compute overlap.
foreach $word(sort keys %$wordlist1){
if (exists($wordlist2->{$word})){
print W "$word\n";
$overlap++; #computing lexical overlap
$cumuoverlap++; #computing cumulative lexical overlap
}
}
format T=
 @>>>>>>>>>> @<<<<<<<<<<< @<<< @<<< @<< @<<
@<<<
$textname1,$textname2,$textsize1,$textsize2,$vocsize1,$vocsize2,$overlap
.
write (T);
print W "---------------------------\nNumber of shared words: $overlap";
#The following puts overlap data to @overlaparray for computing overlap
#standard deviation
push(@overlaparray,$overlap);
#The following reset the value of $j and $overlap for the next text pair.
$j=0;
$overlap=0;

Model answers to the exercises 201

}
}
#The following compute standard deviation.
$moverlap=$cumuoverlap/10;
foreach $overlap(@overlaparray){
$sigma+=($overlap-$moverlap)**2;
}
$s=sqrt($sigma/10);
print T "---\n";
print T "Average lexical overlap: $moverlap\n";
print T "Overlap standard Deviation: $s";
close(F);
close(T);
close(W);

Index

-, 13
--, 13
!=, 19
$#, 81
$$, 136
$$referencename[elementnumber],
138
$$referencename{keyname}, 139
$%, 162
$&, 63
$[, 79
$_, 91
$`, 64
${$referencename}[elementnumber],
138
$’, 64
$1, 65
$a<=>$b, 91
$b cmp $a, 90
$b<=>$a, 91
$referencename->[keyname], 139
$tabstop, 95
%, 13
*, 13, 49
**, 13
., 21, 50
.., 21
/, 13
?, 50
@$referencename[elementnumber],
138
@{$referencename}[elementnumber
], 138
@ARGV, 26
@EXPORT, 134
@ISA, 134
[], 53
{m,n}, 67
{n,}, 67
{n}, 66
|, 53

~~^followed by any number of < or
>, 159
+, 13, 49
++, 13
<, 19
<=, 19
=~, 41
==, 19
>, 19
>=, 19
1, 65
2, 65
3, 65
abs(n), 16
ActivePerl-5.10, 3
alternative operators, 53
and, 23
anonymous array, 140
anonymous variable, 91, 93
Antconc, 1
arc length, 25, 143
ARCHIVE, 152
array, 79, 128
array insertion, truncation and
deletion, 88
ascending order, 89
ASCII, 32
atan2, 18
b, 63
back reference, 65
bigram, 98
BNC, 2, 9, 26, 118, 180, 194
C, 1, 47
C++, 1
centre-justification, 154
centre-justified, 72
centre-justify, 35, 36, 175
CGI, 2
chmode, 152
chomp, 27
chr, 33

Index 203

CLAWS, 71
close, 28
closedir, 150
command line file input, 28
compare, 153
concatenation, 21
concordance, 72
consonant cluster, 56
copy, 153
corpus, 2, 98
cos, 18
d, 48, 62, 63
delete, 111
dereference, 136
dereference for a hash, 139
dereference for arrays, 137
dereference for the individual
elements of an array, 138
dereference for the individual keys
of a hash, 139
dereferencing, 136
descending order, 90
die, 28
directory and file management, 150
directory management, 150
dis legomena, 175, 198
distribution of word frequencies, 119
DOS, 6, 9, 10, 12, 26, 28, 29, 30
double byte language, 75
e, 42
each, 110
else, 19, 20
elsif, 19
entropy, 118
eof, 153
eq, 22
escape character, 12, 30, 59
eval, 171
exists, 111
exp(n), 16
expand, 95
exponential computation, 14
exporter, 132
file handle, 28

File::Compare, 153
File::Copy, 153
floating point, 16
for, 69
foreach, 84, 110
format filehandle =, 154, 155
format filehandle_TOP =, 154, 161
Foxpro, 1
frequency spectrum, 119
g, 43
ge, 22
getc, 34
glob, 151
global, 130
global variables, 131
greediness, 52
grep, 94
gt, 22
hapax legomena, 166
hash, 103, 128
hash elements, 103
HIDDEN, 152
HTML, 57, 59
Hyper Text Markup Language, 57
i, 44
ICON, 1
if, 19
index, 68
int(n), 16
JAVA, 1
join, 92
keys, 103, 107
Kleene star, 49, 52
language typology, 25
lc, 31
le, 22
left-justification, 154
left-justified, 35, 175
lemma, 120
lemmatization, 120
lemmatization algorithm, 120
length, 32
letter frequency, 1
letter graphemic load, 1

 Index 204

letter phonemic load, 1
letter utility, 1
Lexa, 1
lexical bundle, 74
lexical comparisons, 122
Linux, 2
localize arrays and hashes in
subroutines, 131
localize the variables, 131
log(n), 16
log(n)/log(10), 17
log(n)/log(2), 17
logical operator, 23
lt, 22
m//, 41
m/pattern/, 41
Macintosh, 2
main program, 126
make a reference to a hash, 136
making a reference to an array, 135
map, 93
Math::BigInt, 16
metacharacter, 61
mkdir, 150
module, 3, 95, 126, 131, 132, 134,
135, 140, 141, 142, 144, 145, 149,
152, 153, 171, 194
morpheme, 1
MS/DOS, 2
multi-dimensional array, 79, 82
my, 131
natural language processing, 3, 41,
57, 98, 118
ne, 22
nested bracketing, 73
N-gram, 98
not, 23
numbering the elements of an array,
79
OCP, 1
one-byte characters, 75
one-dimensional array, 79
open, 28
opendir, 150, 151

or, 23
ord, 33
OS/2, 2
package, 132
parameter, 127
part-of-speech, 120
per word entropy of English, 119
Perl, 1
phoneme, 1
pop, 87
Porter stemmer, 120
POS tag, 71
print, 8, 11
program editor, 7
push, 86
PYTHON, 1
q(string), 13
qq(string), 13
quantifier, 49
quantitative linguistics, 1, 2, 41, 93,
94, 118
rand(n), 16
random sampling, 94
range, 164, 171
range operator, 21, 80
read, 30
readdir, 150
READONLY, 152
reference, 135
regular expression, 2, 41, 42, 43, 49,
50, 52, 54, 60, 61, 63, 72, 142, 184
regular expression operator, 61
rename, 151
return, 126, 129, 132, 134
reverse, 81
right-justification, 40, 154
rindex, 69
rmdir, 150
s, 48, 62
s///, 42, 48
scalar, 11, 132, 134, 135, 136, 141,
149, 192
script, 3, 9, 12, 52
select, 162

Index 205

shift, 86
sin, 18
SNOBOL4, 1
sort, 89
SPITBOL, 1
splice, 88
split, 84
sprintf, 17
sqrt(n), 16
standard deviation, 176
STDIN, 27
structure of a reference, 135
sub, 126, 132
subroutine, 127, 130
substr, 69
syllabic word length, 56
syllable, 1, 25, 56
system(cls), 167
Tact, 1
time, 152
tokenize, 76
tr///, 46
trigram, 98
tris legomena, 175, 198
truncate, 153
TTR, 175, 198
uc, 31
ucfirst, 32
Unix, 2
unlink, 153
unshift, 86

use, 132
use Exporter, 134
use module, 134
use Text::Tabs, 95
utime, 152
values, 103,110
variable, 11
VB, 1, 71, 72
VMS, 2
vocabulary growth, 164, 166
vocabulary overlap, 175
vocabulary richness, 1
vowel cluster, 56
w, 61
while, 28
wild card, 49
Win32::File::GetAttributes, 152
Win32::File::SetAttributes, 152
Windows (X86), 3
Windows Wordpad, 7, 11
word length distribution, 3, 187
word token, 1, 101, 109, 110, 121,
144, 188, 195
word type, 1, 78, 100, 101, 109, 110,
145, 195
WordSmith, 1
write filehandle, 155
x, 21, 45
XML, 60
Yule’s K, 1, 125

	Preface
	Contents
	1. Introduction
	1.1.Quantitative linguistics and Perl
	1.2.Characteristics of this book
	1.3. Downloading and installation
	1.4.Program editor
	1.5.Conventions used in this book
	2. Perl variables and operators
	2.1.Perl variables
	2.2.Value assignement to variables
	2.3.Perl numeric operators and functions
	2.3.1.Math operators
	2.3.2.Math functions
	2.3.3.Numeric comparison operators
	2.4.String operators and string comparison operators
	2.4.1.String operators
	2.4.2.String comparison operators
	2.5.The logical operator
	Exercises
	3. Input and output
	3.1.Input at the command line
	3.1.1.The use of $ARGV
	3.1.2.The use of STDIN
	3.1.3.Command line file input
	3.2.Inputting files inside a program
	3.3.Some string manipulation functions
	3.4.Applications
	Exercises
	4. Regular expressions: basic structure
	4.1.Operators for regular expressions
	4.1.1.=~ and m//
	4.1.2.s///
	4.1.3.tr///
	4.2.Regular expression quantifiers and other operators
	4.2.1.The general quantifiers and wild card
	4.2.2.The greadiness of the quantifiers * and +
	4.2.3.The alternative operator, anchors and the escape operator
	4.3. Applications
	4.3.1. Text tokenizer
	4.3.2.Compuiting syllabic word length
	4.3.3.Removal of HTML codes in texts
	Exercises
	5. Regular expressions: advanced topics
	5.1.Metacharacters for regular expressions
	5.2. Special variables
	5.3.Back referencing
	5.4. Quantifying expressions
	5.5.String manipulation functions
	5.6.Applications
	5.6.1.Extraction of POS tags
	5.6.2.Making concordance for a text
	5.6.3.Extraction of lexical bundles from texts
	5.6.4. A Chinese tokenizer
	Exercises
	6. Arrays
	6.1. Array creation
	6.1.1.One dimensional arrays
	6.1.2.Multi-dimensional arrays
	6.1.3.Converting texts into arrays
	6.2.Functions for array operations
	6.2.1.Functions for array input and output
	6.2.2.Array insertion, truncation and deletion
	6.2.3. Sorting an array
	6.2.4.The anonymous variable and the join, map and grep functions
	6.3.Combining identical array elements and random sampling from an array
	6.4. Applications
	6.4.1. Selecting words from a wordlist
	6.4.2. Turning a text into bigrams
	6.4.3. Turning a text into a list of word types with frequencies
	6.4.4. Computing sentence length distribution
	Exercises
	7. Hash tables
	7.1.Hash input and output
	7.1.1. Manual input and output
	7.1.2. Hash input and output using arrays and functions
	7.1.3.The use of values(), each(), exist() and delete()
	7.2. Hash operations
	7.2.1.Converting hash elements into an array
	7.2.2. Combining two or more hashes together
	7.2.3. Hash comparisons
	7.2.4. Computing value frequencies
	7.3. Applications
	7.3.1. Computing per word entropy of English
	7.3.2. Making a word frequency spectrum
	7.3.3. Lemmatization
	7.3.4.Lexical comparison between two texts
	Exercises
	8. Subroutines and modules
	8.1. Subroutines
	8.1.1. The basic structure
	8.1.2. Parameters of subroutines
	8.1.3. The use of return() in subroutines
	8.1.4. Localization of variables in subroutines
	8.2. Modules
	8.3. References
	8.3.1. Making references
	8.3.2. Dereferencing for scalar variables and references
	8.3.3. Dereferencing for arrays
	8.3.4. Dereferencing for hashes
	8.4. Use of references in subroutines and modules
	8.5. Applications
	8.5.1. Computing arc length
	8.5.2. A module for removing non-alphanumeric characters
	8.5.3. A lexical comparison program
	Exercises
	9. Directory and file management
	9.1. Directory management
	9.2. File management
	9.3. Formatting output diles
	9.3.1.Outputting data in their original format
	9.3.2. Arranging data in left-justified columns
	9.3.3. Arranging data in right-justified columns
	9.3.4. Arranging data in centre-justified columns
	9.3.5. Formatting data that has line breaks
	9.3.6. Producing page heading and paginating output files
	9.4. Applications
	9.4.1. A page-formatting program
	9.4.2. Computing vocabulary growth
	9.4.3. A program for computing word range
	Exercies
	Appendix: Model answers to the exercises
	Exercises of Chapter 2
	Exericses of Chapter 3
	Exercises of Chapter 4
	Exercises of Chapter 5
	Exercises of Chapter 6
	Exercises of Chapter 7
	Exercises of Chapter 8
	Exercises of Chapter 9
	Index

