MODELLING AND SIMULATION
OF PRODUCTION SYSTEMS
IN INDUSTRIAL AND DIGITAL ENGINEERING

Peter TREBUŇA
Miriam PEKARČÍKOVÁ
Marek KLIMENT
Jozef TROJAN
Marek MIZERÁK

2019
CONTENTS

INTRODUCTION .. 6

1 INDUSTRIAL ENGINEERING ... 1
 1.1 Science and Engineering .. 1
 1.2 Industrial engineering .. 3
 1.3 Process Principles in Manufacturing .. 7
 1.4 Enterprise engineering (Cooperative engineering) .. 8

2 METHODS OF INDUSTRIAL ENGINEERING ... 16
 2.1 TQM – Total Quality Management .. 16
 2.2 JIT – Just-in-time .. 17
 2.3 BPR – Business Process Reengineering .. 17
 2.4 Six Sigma methodology ... 18
 2.5 Lean philosophy ... 19
 2.6 Continuous improvement ... 22
 2.7 Single-Minute Exchange of Die (Quick changeover) ... 23
 2.8 BPM – Business Process Management .. 23

3 IMPORTANCE OF CORPORATE INFORMATION SYSTEMS WITHIN THE
 PLANNING OF CORPORATE PROCESSES .. 25
 3.1 Corporate process modelling .. 25
 3.1.1 Model of a corporate process ... 28
 3.2 Business System Planning ... 29
 3.2.1 Preparatory stage ... 29
 3.2.2 Analytical part .. 30
 3.2.3 Application part .. 34
 3.3 Corporate information systems .. 35
 3.3.1 Structured approach to information system creation 39
 3.4 Object-oriented approaches to the preparation of an information system 47
 3.4.1 Object-oriented design ... 49
 3.4.2 Object modeling technique ... 50
 3.4.3 Comparison of specific and object-oriented approach to the creation of
 information systems of the company ... 51
 3.5 Architecture of Integrated Information Systems .. 52
 3.6 Kanban .. 54
 3.6.1 Online Kanban ... 56
 3.7 Overall Equipment Effectiveness (OEE) ... 59

4 INNOVATION .. 61
 4.1 What is innovation ... 61
 4.2 Types of Innovation ... 61
 4.3 Standardization as a driving force for innovation .. 66
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 STAGES IN EXPERIMENTAL MODELING</td>
<td>174</td>
</tr>
<tr>
<td>13.1 Experiment design</td>
<td>174</td>
</tr>
<tr>
<td>13.2 Realization of measurement</td>
<td>181</td>
</tr>
<tr>
<td>13.3 Processing of measurement results</td>
<td>185</td>
</tr>
<tr>
<td>13.4 Experiment evaluation and assessment</td>
<td>185</td>
</tr>
<tr>
<td>14 MODELLING THE DESIGN, MANAGEMENT, PERFORMANCE AND IMPROVEMENT OF PRODUCTION SYSTEMS</td>
<td>186</td>
</tr>
<tr>
<td>14.1 Model of production system</td>
<td>186</td>
</tr>
<tr>
<td>14.2 Analysis of production systems and its phases</td>
<td>195</td>
</tr>
<tr>
<td>14.2.1 Design of production systems</td>
<td>195</td>
</tr>
<tr>
<td>14.2.2 Management of production systems</td>
<td>197</td>
</tr>
<tr>
<td>14.2.3 Measurement of production systems performance</td>
<td>200</td>
</tr>
<tr>
<td>14.2.4 Improving the performance of production systems</td>
<td>201</td>
</tr>
<tr>
<td>14.3 Model options</td>
<td>203</td>
</tr>
<tr>
<td>14.4 Model of production system design and its analysis</td>
<td>207</td>
</tr>
<tr>
<td>14.5 Models of production systems management</td>
<td>209</td>
</tr>
<tr>
<td>14.5.1 Basic APP model</td>
<td>210</td>
</tr>
<tr>
<td>14.5.2 Basic model extension</td>
<td>212</td>
</tr>
<tr>
<td>14.5.3 Scheduling of production</td>
<td>213</td>
</tr>
<tr>
<td>14.6 Types of production systems management</td>
<td>218</td>
</tr>
<tr>
<td>14.7 Supply chain management</td>
<td>221</td>
</tr>
<tr>
<td>14.8 Performance modelling and production system improvement</td>
<td>227</td>
</tr>
<tr>
<td>15 MARKETING AND MANAGEMENT AS A MODELLING OBJECT</td>
<td>245</td>
</tr>
<tr>
<td>15.1 Marketing strategy and its creation</td>
<td>246</td>
</tr>
<tr>
<td>15.2 Simulation models in marketing and management</td>
<td>259</td>
</tr>
<tr>
<td>15.3 Creation of simulation model</td>
<td>261</td>
</tr>
<tr>
<td>15.4 Evaluation of computer simulation and modelling</td>
<td>261</td>
</tr>
<tr>
<td>16 LOGISTICS AS A MODELING OBJECT</td>
<td>263</td>
</tr>
<tr>
<td>16.1 Definition, functions and scheme of company logistics</td>
<td>263</td>
</tr>
<tr>
<td>16.2 Logistic functions</td>
<td>268</td>
</tr>
<tr>
<td>16.3 Modeling of logistics chain</td>
<td>270</td>
</tr>
<tr>
<td>16.4 Supply logistics</td>
<td>273</td>
</tr>
<tr>
<td>16.5 Production logistics</td>
<td>275</td>
</tr>
<tr>
<td>16.6 Warehouse logistics</td>
<td>281</td>
</tr>
<tr>
<td>16.7 Distribution logistics</td>
<td>288</td>
</tr>
<tr>
<td>17 SIMULATION IN INDUSTRIAL ENGINEERING</td>
<td>294</td>
</tr>
<tr>
<td>17.1 Classification of computer simulations</td>
<td>296</td>
</tr>
<tr>
<td>17.2 Modern tools for simulation experimentation</td>
<td>297</td>
</tr>
<tr>
<td>17.3 Advantages and disadvantages of simulation</td>
<td>301</td>
</tr>
<tr>
<td>17.4 Identifying areas using simulations</td>
<td>302</td>
</tr>
</tbody>
</table>
18 MODELLING AND SIMULATION OF PRODUCTION SYSTEMS 304
 18.1 Causal and acausal modelling ... 304
 18.2 Modelling and simulation of complex systems 305
 18.3 Objectives of models and simulations 306
 18.4 Types of models .. 306

19 PLM (PRODUCT LIFECYCLE MANAGEMENT) SYSTEMS 310
 19.1 PLM characteristic ... 311
 19.2 Functions of PLM systems ... 314
 19.3 Basic elements of PLM philosophy 316
 19.4 Description of advantages of PLM systems 317
 19.5 Siemens PLM portfolio .. 318
 19.5.1 NX products .. 319
 19.5.2 Velocity Series .. 320
 19.5.3 Teamcenter ... 321
 19.6 Simulation software solutions .. 322
 19.7 Process Simulate Modules ... 324
 19.7.1 Process Simulate Assembly ... 325
 19.7.2 Process Simulate Human .. 325
 19.7.3 Process Simulate Spot Weld .. 325
 19.7.4 Process Simulate Robotics ... 325
 19.7.5 Process Simulate Virtual Commissioning 326
 19.8 Simulation options in the Process Simulate environment 329
 19.8.1 Event-based simulation basics 329
 19.8.2 Unique event-based simulation abilities 331
 19.8.3 Cyclic Event Evaluator – CEE 331
 19.9 PLM systems and selected software modules 332
 19.9.1 Tx Plant Simulation .. 338
 19.9.2 Tx Process Designer module 339
 19.9.3 Tx Process Simulate module 341
 19.9.4 FactoryCAD .. 344
 19.9.5 FactoryFLOW .. 345
 19.9.6 RobCAD .. 346
 19.9.7 Tx Jack & Jill ... 346
 19.9.8 Teamcenter – data management of control systems 351
 and business processes ... 351
 19.10 Digital enterprise ... 354

20 TECNOMATIX PROCESS SIMULATE VIRTUAL COMMISSIONING,
 ENVIROMENT AND TOOLS USED TO DESIGN
 MANUFACTURING SYSTEMS .. 358
 20.1 Project creation process .. 358
 20.2 Description of the modelled workplace 367
 20.3 Creating kinematics of individual components of the production line 370
 20.3.1 Creation of CNC lathe kinematics 370
 20.3.2 Creating a kinematic table ... 375
 20.3.3 Creating the kinematics of fixtures 377
 20.3.4 Creating a conveyor .. 379
 20.3.5 Logic Blocks – Smart Component 383
20.3.6 Creating a logical block for a robot carrier ... 384
20.3.7 Creating a logical block for a CNC lathe ... 390
20.3.8 Automatically create a logical block for a rotary table 391
20.3.9 Automatic creation of logical block for fixtures 393
20.3.10 Establishing a connection of the rotary table to the fixtures 394
20.3.11 Creating sensors ... 395
20.3.12 Creation of material flow .. 397

21 INDUSTRY 4.0 AND SIMULATION TRENDS ... 398
21.1 Industry 4.0 .. 398
21.2 The concept of Industry 4.0 ... 402
21.3 Use of the digital twin concept ... 409

CONCLUSION ... 417

REFERENCES .. 418
INTRODUCTION

The presented monograph deals with the implementation of procedure, modelling and simulation of production systems within industrial and digital engineering. The major part of the monograph is aimed at the issue of company production processes, i.e. modelling and simulation in particular. These processes are analysed and planned with assistance of chosen software modules to create a link between a digital image of production and real in-house production process. Actual debugging of line programmes takes place in a digital environment of a suitable application in connection with specialized components which generate signals and behaviour of objects instead of the production line. This revolutionary solution enables us to prevent collisions and errors in projects much sooner, even before production halls are constructed. Currently, when production companies seek to minimize their costs of production or costs of production implementation or possible changes of production, the application of new PLM systems becomes an inseparable part of a modern company. PLM systems cover management and control operations of all processes within product life cycle. The necessity to track a product from its plan and design, through production planning to actual production guaranteed that standards are followed which, eventually, gave rise to a unique system that uses sophisticated software tools to control and manage data concerning a given product. Advantages of the use of PLM system outweigh initial costs of its implementation. Modelling and simulation of a manufacturing process means to create a digital image of how the production looks and which activities are performed within the production. Additional analyses or simulation of a manufacturing process might expose potential errors in the process, bottlenecks etc. PLM systems could as well be used for virtual commissioning. This technology enables detailed digitalisation of production, focused on a product or production equipment, and subsequent simulation of a required production process according to project documentation. Such simulation in a PLM system environment results in a ready programme for a company production line. This saves time necessary for testing and debugging of operations on the production line after commissioning in the production hall. Time savings come even in an initial point of planning, when a number of errors and collisions may be exposed which might occur during actual production.
Introduction

The presented monograph is divided into 21 chapters following each other. These chapters provide theoretical as well as practical information on modelling, simulation and PLM systems in connection with real implementation of I 4.0 in industrial practice.

Authors

This monograph was prepared with financial support of the following projects

APVV-17-0258 Digital engineering elements application in innovation and optimization of production flows

VEGA 1/0708/16 Development of new research methods to simulate, review, evaluate and quantify advanced manufacturing methods

KEGA 030TUKE-4/2017 Implementation of innovative tools for the increase of quality in the university education within the field of study 5.2.52 Industrial engineering