Sustainable Renovation within Metallurgical Production

by

Janette Brezinová, Ján Viňáš, Pavlo O. Maruschak, Anna Guzanová, Dagmar Draganovská, Marek Vrabeľ
AUTHORS

prof. Ing. Janette BREZINOVÁ, Ph.D.
doc. Ing. Ján VIŇÁŠ, Ph.D.
prof. Pavlo O. MARUSCHAK, DSc.
doc. Ing. Anna GUZANOVÁ, Ph.D.
doc. Ing. Dagmar DRAGANOVSKÁ, Ph.D.
Ing. Marek VRABEL’, Ph.D.

Technical University of Košice
Faculty of Mechanical Engineering
Department of Mechanical Technology and Materials
Slovakia

REVIEWERS

prof. Olegas PRENTKOVSKIS, Vilnius Gediminas Technical University, Faculty of Transport Engineering, LITHUANIA

prof. Ing. Pavol SEJČ Ph.D., IWE., Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Slovak Republic

doc. Ing. Ladislav KOLAŘÍK, Ph.D., IWE, Czech Technical University in Prague, Faculty of Mechanical Engineering, Czech Republic

© Janette Brezinová, Ján Viňáš, Pavlo O. Maruschak, Anna Guzanová, Dagmar Draganovská, Marek Vrabeľ, 2017

Contents

1. Renovation of Components .. 1
 1.1. Production of steel in continuous casting lines... 2
 1.1.1. Relationship between technology and degradation of CBCM rollers.............. 4
 1.2. Hot-rolling mill ... 6
 1.3. Cold-rolling mill ... 8

2. Selected Components under Extreme Stress and Strain in Metallurgy 14
 2.1. Rollers for continuous casting of steel ... 14

3. The Materials Used for the Production of Rollers for the Continuous Casting of Steel ... 18
 3.1 The effect of heat treatment on metallurgical processes in rollers materials........ 22
 3.2. Analysis of welding properties of rollers materials ... 22
 3.3. Heat treatment of welded joints, CrMo, CrMoV and Cr, CrNi stainless steels...... 24

4. Degradation Factors Affecting the Service Life of Rollers .. 26

5. Renovation Technologies Used in the Reconstruction of the Continuous Casting Rollers ... 39
 5.1. Submerged arc welding (SAW) methods... 40
 5.1.1. The effect of the welding head position on the quality of weld deposit..... 41
 5.1.2. Overlap and mixing of the weld metal .. 43
 5.2. Hard surfacing by means of consumable electrode in protective atmospheres of gases (GMAW, FCAW) ... 44
 5.2.1. Shielding holding gases used in hard Surfacing (GMAW)................................. 45
 5.2.2. Metal Transfer in theArc (GMAW) ... 46
 5.3. Gas tungsten arc welding (GTAW) ... 48
 5.4. Manual metal arc welding (MMAW) ... 49
5.5. Electroslag welding .. 49
5.6. Electrospark hardening ... 50
5.7. Laser surface coating of rollers ... 52
5.8. Bimetallic rollers with centrifugally cast bandage ... 55
5.9. Filler metals for SAW and GMAW welding (FCAW) .. 56
5.10. The classification of filler metals used for hard surfacing .. 58

6. The Selection of Filler Metals Used for Hard Surfacing of Continuous Casting Rollers .. 68

7. Technological Processes in the Rollers Renovation .. 79

8. Re-Contouring of Hardfacing Overlays ... 88
 8.1. State of the art ... 88
 8.2. Workpiece materials for hardfacings ... 91
 8.3. Cutting tools applicable in turning hard overlays .. 94
 8.3.1. Tool geometry .. 94
 8.3.2. Tool materials and cutting conditions ... 97
 8.3.3. Cutting edge geometry ... 100
 8.4. Machinability of hardfacing layers ... 102
 8.4.1. Tool wear .. 102
 8.4.2. Chip formation and its types ... 104
 8.4.3. Surface integrity ... 106
 8.4.4. Cutting force and temperature .. 109
 8.5. Cooling methods suitable for machining of hardfacing materials 110

 9.1. Surface micro-geometry .. 117
 9.1.1. 2D evaluation of surfaces micro-geometry ... 119
 9.1.2. 3D evaluation of the surfaces micro-geometry ... 122
 9.2. Devices for surface micro-geometry measurement .. 128
10. Evaluation of Quality of Renovation Layers... 134

10.1. Non-destructive testing of weld deposits ... 134
 10.1.1. Visual testing of rollers after hard surfacing .. 134
 10.1.2. Liquid penetrant testing of rollers after hard facing 135
 10.1.3. Ultrasonic testing of rollers ... 136

10.2. Destructive testing of weld deposits .. 142
 10.2.1. Visual testing of rollers after hard surfacing ... 142
 10.2.2. The evaluation of weld deposit hardness ... 144
 10.2.3. The evaluation of erosive wear resistance of weld deposits 145
 10.2.4. Pin-on-disc adhesive wear testing of weld deposits .. 147
 10.2.5. The evaluation of the quality of weld deposits in the conditions of thermal cyclic loading ... 149
 10.2.6. Laboratory methods for assessment of temperature fields and thermal fatigue damage ... 152

11. Possibilities of Renovation of Machine Parts Using Thermal Spraying Technology .. 163

11.1. Thermal spraying technology ... 163
 11.1.1. Surface pre-treatment prior to thermal spraying ... 164
 11.1.2. Thermal spraying methods ... 164

11.2. Additives for thermal spraying .. 168

11.3. Properties of thermal sprayed coatings ... 171

11.4. Coatings applied by the technology of plasma spraying 175
 11.4.1. Coatings based on ceramics and composite ceramics 175
 11.4.2. Cermet-based coatings ... 186

11.5. Coatings applied by the HVOF technology .. 193
Preface

The aim of the monograph “Sustainable renovation within metallurgical production” is to demonstrate on selected components - rollers used in continuous steel casting lines, possibilities of increasing their lifetime and thereby minimize the cost of their recovery. The operating time of these components is greatly affected by the combination of degradation factors under severe tribological conditions. There are documented tribodegradation factors limiting the life of these components, surface recovery methods, procedures for assessing the quality of the newly created layers, the development of filler materials, the heat treatment procedures and the assessment of the quality of the renovation layers. The monograph summarizes the appropriate welding technologies and thermal spray with the specification of the technological parameters and procedures. The results of the long-term research of the authors' team in the field of creation and evaluation of the renovation layers’ quality using experimental methods are presented. The research was also undertaken within the area of component renovation using the HVOF technology. The research results from the field of surface evaluation and analysis of the renovation layers' machinability are also published. The original detections mentioned in this monograph will contribute for transferring the research results into technical practice. The monograph can serve as a source of both technical and scientific information for scientific researchers and a broad professional community.

While writing the monograph authors comes out from the RIS 3 - Research and Innovation Strategy for the Intelligent Specialization of the Slovak Republic. Material research focusing on new materials, surface treatments and system diagnostics for applications in the areas of industry specialization of the Slovakia, specifically in the automotive, mechanical, electrical, metallurgical and other sectors belongs to research and development priorities.

The authors would like to thank the reviewers of the monograph who have contributed by their comments and valuable advice to the quality and professional level of the publication. This publication has been developed as part of the solution of the following projects: project of Ministry of Education of the Slovak Republic VEGA 1/0424/17 "Study of the properties of newly constituted layers and coatings in tribological systems", project of Ministry of Education of the Slovak Republic KEGA 059TUKE-4/2016: "Innovative learning approaches in the composite component’s design and production area", project APVV-16-0359 “The utilization of innovative technology for repair functional surfaces of mold casting dies for castings in automotive industry” and the international bilateral project APVV SK-UA-2013-0013: Investigation of cracking and wear of materials for metallurgical equipment.”