TECHNICAL UNIVERSITY OF KOŠICE FACULTY OF MECHANICAL ENGINEERING 2017

Sustainable Renovation within Metallurgical Production

by

Janette Brezinová, Ján Viňáš, Pavlo O. Maruschak, Anna Guzanová, Dagmar Draganovská, Marek Vrabeľ

AUTHORS

prof. Ing. Janette BREZINOVÁ, Ph.D.

doc. Ing. Ján VIŇÁŠ, Ph.D.

prof. Pavlo O. MARUSCHAK, DSc.

doc. Ing. Anna GUZANOVÁ, Ph.D.

doc. Ing. Dagmar DRAGANOVSKÁ, Ph.D.

Ing. Marek VRABEĽ, Ph.D.

Technical University of Košice

Faculty of Mechanical Engineering

Department of Mechanical Technology and Materials

Slovakia

REVIEWERS

prof. **Olegas PRENTKOVSKIS**, Vilnius Gediminas Technical University, Faculty of Transport Engineering, LITHUANIA

prof. Ing. **Pavol SEJČ** Ph.D., IWE., Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Slovak Republic

doc. Ing. **Ladislav KOLAŘÍK**, Ph.D., IWE, Czech Technical University in Prague, Faculty of Mechanical Engineering, Czech Republic

© Janette Brezinová, Ján Viňáš, Pavlo O. Maruschak, Anna Guzanová, Dagmar Draganovská, Marek Vrabeľ, 2017

ISBN 978-3-942303-58-3

Contents

1.	Renovation of Components 1
	1.1. Production of steel in continuous casting lines2
	1.1.1. Relationship between technology and degradation of CBCM rollers4
	1.2. Hot-rolling mill6
	1.3. Cold-rolling mill8
2.	Selected Components under Extreme Stress and Strain in Metallurgy 14
	2.1. Rollers for continuous casting of steel14
3.	The Materials Used for the Production of Rollers for the Continuous Casting
	of Steel18
	3.1 The effect of heat treatment on metallurgical pro cesses in rollers materials22
	3.2. Analysis of welding properties of rollers materials
	3.3. Heat treatment of welded joints, CrMo, CrMoV_and Cr, CrNi stainless steels24
4.	Degradation Factors Affecting the Service_Life of Rollers
5.	Renovation Technologies Used in the Reconstruction of the Continuous
	Casting Rollers 39
	5.1. Submerged arc welding (SAW) methods40
	5.1.1. The effect of the welding head position on the quality_of weld deposit41
	5.1.2. Overlap and mixing of the weld metal43
	5.2. Hard surfacing by means of consumable electrode in protective atmospheres of gases (GMAW, FCAW)44
	5.2.1. Shielding hielding gases used in hard Surfacing (GMAW)45
	5.2.2. Metal Transfer in theArc (GMAW)46
	5.3. Gas tungsten arcwelding (GTAW)48
	5.4. Manual metal arc welding (MMAW)49

	5.5. Electroslag welding	49
	5.6. Electrospark hardening	50
	5.7. Laser surface coating of rollers	52
	5.8. Bimetallic rollers with centrifugally cast bandage	55
	5.9. Filler metals for SAW and GMAW welding (FCAW)	56
	5.10. The classification of filler metals used for hard surfacing	58
6.	The Selection of Filler Metals Used for Hard_Surfacing of Continuous Casti	ng Rollers 68
7.	Technological Processes in the Rollers Renovation	79
8.	Re-Contouring of Hardfacing Overlays	88
	8.1. State of the art	88
	8.2. Workpiece materials for hardfacings	91
	8.3. Cutting tools applicable in turning hard overlays	94
	8.3.1. Tool geometry	94
	8.3.2. Tool materials and cutting conditions	97
	8.3.3. Cutting edge geometry	100
	8.4. Machinability of hardfacing layers	102
	8.4.1. Tool wear	102
	8.4.2. Chip formation and its types	104
	8.4.3. Surface integrity	106
	8.4.4. Cutting force and temperature	109
	8.5. Cooling methods suitable for machining of hardfacing materials	110
9.	Surface and its Evaluation in Terms of Microgeometry	116
	9.1. Surface micro-geometry	117
	9.1.1. 2D evaluation of surfaces micro-geometry	119
	9.1.2. 3D evaluation of the surfaces micro-geometry	122
	9.2. Devices for surface micro-geometry measurement	128

10.	Evalu	uation of Quality of Renovation Layers	134
	10.1.	Non-destructive testing of weld deposits	134
		10.1.1. Visual testing of rollers after hard surfacing	134
		10.1.2. Liquid penetrant testing of rollers after hard facing	135
		10.1.3. Ultrasonic testing of rollers	136
	10.2.	Destructive testing of weld deposits	142
		10.2.1. Visual testing of rollers after hard surfacing	142
		10.2.2 The evaluation of weld deposit hardness	144
		10.2.3 The evaluation of erosive wear resistance of weld deposits	145
		10.2.4 Pin-on-disc adhesive wear testingof weld deposits	147
		10.2.5 The evaluation of the quality of weld deposits in the conditions of thermal cyclic loading	149
		10.2.6 Laboratory methods for assessment of temperature fields and thermal fatigue damage	152
11.	Poss	ibilities of Renovation of Machine Parts_Using Thermal Spraying Technolo	gy 163
	11.1	. Thermal spraying technology	163
		11.1.1 Surface pre-treatment prior to thermal spraying	164
		11.1.2. Thermal spraying methods	164
	11.2	. Additives for thermal spraying	168
	11.3	. Properties of thermal sprayed coatings	171
	11.4	. Coatings applied by the technology of plasma spraying	175
		11.4.1. Coatings based on ceramics and composite ceramics	175
		11.4.2. Cermet-based coatings	186
	11.5	. Coatings applied by the HVOF technology	193

Preface

The aim of the monograph "Sustainable renovation within metallurgical production" is to demonstrate on selected components - rollers used in continuous steel casting lines, possibilities of increasing their lifetime and thereby minimize the cost of their recovery. The operating time of these components is greatly affected by the combination of degradation factors under severe tribological conditions. There are documented tribodegradation factors limiting the life of these components, surface recovery methods, procedures for assessing the quality of the newly created layers, the development of filler materials, the heat treatment procedures and the assessment of the quality of the renovation layers. The monograph summarizes the appropriate welding technologies and thermal spray with the specification of the technological parameters and procedures. The results of the long-term research of the authors' team in the field of creation and evaluation of the renovation layers' quality using experimental methods are presented. The research was also undertaken within the area of component renovation using the HVOF technology. The research results from the field of surface evaluation and analysis of the renovation layers' machinability are also published. The original detections mentioned in this monograph will contribute for transferring the research results into technical practice. The monograph can serve as a source of both technical and scientific information for scientific researchers and a broad professional community.

While writing the monograph authors comes out from the RIS 3 - Research and Innovation Strategy for the Intelligent Specialization of the Slovak Republic. Material research focusing on new materials, surface treatments and system diagnostics for applications in the areas of industry specialization of the Slovakia, especifically in the automotive, mechanical, electrical, metallurgical and other sectors belongs to research and development priorities.

The authors would like to thank the reviewers of the monograph who have contributed by their comments and valuable advice to the quality and professional level of the publication. This publication has been developed as part of the solution of the following projects: project of Ministry of Education of the Slovak Republic VEGA 1/0424/17 "Study of the properties of newly constituted layers and coatings in tribological systems", project of Ministry of Education of the Slovak Republic KEGA 059TUKE-4/2016: "Innovative learning approaches in the composite component's design and production area", project APVV-16-0359 "The utilization of innovative technology for repair functional surfaces of mold casting dies for castings in automotive industry" and the international bilateral project APVV SK-UA-2013-0013: Investigation of cracking and wear of materials for metallurgical equipment."