Role of Borescopy in Ensuring the Operability of Turbomachines

Jozef ŽARNOVSKÝ Rastislav MIKUŠ Norbert KECSKÉS

Role of Borescopy in Ensuring the Operability of Turbomachines

Jozef ŽARNOVSKÝ Rastislav MIKUŠ Norbert KECSKÉS

Scientific monograph

2016

RAM-Verlag

Title:	Role of Borescopy in Ensuring the Operability of Turbomachines
Authors:	ŽARNOVSKÝ Jozef, doc. Ing. PhD. MIKUŠ Rastislav, Ing. PhD. KECSKÉS Norbert, Mgr. PhD.
Lecturers:	RUŽBARSKÝ Juraj, doc. Ing. PhD. KOTUS Martin, doc. Ing. PhD.

ISBN 978-3-942303-39-2

CONTENTS

	Π	NTRODUCTION	1
1	Objective of the work		
2	Ν	faintenance and reliability as an identification tool of	
	th	e equipment's technical condition	3
	2.1	The role of technical diagnostics	3
	2.2	Diagnosability of an object	4
	2.3	Measuring as a part of diagnostics	5
3	Relationship between diagnostics, maintenance and accident risk		8
	3.1	Maintenance strategies	9
	3.2	Maintenance policy	12
	3.3	Technical diagnostics as a cognitive tool	14
4	S	Subjective methods of technical diagnostics	
	4.1	Maintenance support by means of technical diagnostic methods	
		in energy industry	18
	4	1.1 Vibrodiagnostics	19
	4	1.2 Infrared diagnostics	20
	4	1.3 Inspection of emissions in exhaust gases	20
	4	1.4 Internal inspection of technological devices	20
5	V	isual diagnostics - borescopy	21
	5.1	Characteristics of the diagnostic method - borescopy	22
	5.2	Device types for visual inspection	22
	5	2.1 Industrial endoscopes	22
6	А	pplications of industrial endoscopes	27
	6.1	Aviation	27
	6.2	General industry	27
	6.3	Chemical industry	28

	6.4	Auto	motive industry	28
	6.5 Security and civil protection			29
	6.6 Construction industry			30
	6.7	Rese	arch	30
	6.8	Ener	gy industry	31
7	A	pplica	tions of borescopy in practice	32
	7.1	Spec	ifications of the selected energy organization	32
	7.2	Spec	ifications of the endoscope device	33
	7.3	Spec	ifications of the diagnosed object	36
	7.	3.1	Description of the combined cycle	38
	7.4	Bore	scope inspection characteristics of the observed object	39
	7.	4.1	Modules of the RB211 - DLE turbomachine	40
	7.	4.2	Instructions and safe operation of the RB211-DLE	
			turbomachine	41
	7.5	Sugg	sestions for carrying out borescope inspections	43
	7.	5.1	Evaluation criteria for the RB211-DLE turbomachine	45
	7.	5.2	Possible damages of the RB211-DLE turbomachine	45
	7.6	Bore	scope inspection of IP compressor blades of stages 2 to 7	47
	7.	6.1	Acceptability standards for IP compressor blades	48
	7.7	Bore	scope inspection of HP compressor blades	49
	7.	7.1	Acceptability standards for HP compressor blades	50
	7.8	Bore	scope inspection of the ignition system	52
	7.9	Bore	scope inspection of HP turbine nozzle guide vanes	54
	7.	9.1	Acceptability standards for HP turbine nozzle guide	
			vanes	54
	7.10	Bore	scope inspection of high pressure (HP) turbine blades	56
	7.	10.1	Acceptability standards for HP turbine blades	57

	7.11 Borescope inspection of intermediate pressure (IP) turbine				
	blades				
	7.	11.1 Acceptability standards for IP turbine blades	61		
8	R	esults obtained from borescope inspections	62		
	8.1	Damages of intermediate pressure axial compressor - IPC	65		
	8.2	Damages of axial high pressure compressor - HPC	68		
	8.3	Damages of intermediate pressure (IPT) and high			
		pressure (HPT) turbine	71		
	8.4	Damages of combustion chambers	73		
	8.5	Summary of results	77		
9	С	onclusion	79		
10	R	eferences	81		

PREFACE

One of the main activities and tasks of service engineering is to ensure operability of machines.

Highly mechanized and automated technological devices with existing functional links between individual constituting elements emphasize the problem of machine downtimes and ensuing costs.

In connection with increasing complexity of machines, their purchase price, maintenance and repair costs, it is an important factor that needs to be addressed both in sphere of production by improving their performance and reliability as well as at the operator by high quality maintenance activities.

It is important to realize that an inseparable part in the lifetime of technological devices is their operation and operational reliability ensuring through maintenance activities after diagnosis of the previous state.

All technological devices must be invented, designed, dimensioned and then operated and all these stages are subjected to management. We can say that the operating stage of technological devices is not only the longest but also the most relevant and most important stage of their lifetime, as these devices become work or production devices and hence they create economic value.

This scientific monograph is focused, in technical diagnostics view, on emphasis of preventive maintenance effect to reliable and safe operation of technological equipment.

Issues of boroscopy, as one of diagnostic methods that allows fast information acquirement of internal parts of technological system of turbo set RB211 - DLE installed in steam-gas cycle facility in the chosen organisation, are described in this monograph. The monograph brings new views onto internal inspection of technological systems from the quality point of view, covering searching possible defects and assessing qualitative attributes of the internal parts of the system. Such qualitative attributes as are for instance shape deviation, material integrity, breaks, cracks, caves can be observed in boroscopy tests directly, in real time.

Solved problems resulted from specific demands of facility operation and reflect state-of-the-art in relevant science field. Procedures proposal, assessing criteria specification and classification of possible damages in the system operation are main parts of the monograph. The system condition is assessed then in the monograph, based on boroscopy tests realised. Conclusions are drawn then and recommendations for next system operation are provided. The results fulfil assumptions as well as technical demands in the area of technical diagnostics. This means reliability and safety of the system assurance, using instruments of autonomous maintenance and inspection, check and revision actions regarding to adherence of rules and principles of proper technological system operation.

Authors

INTRODUCTION

In present days, technical diagnostics has become not only an independent scientific discipline but principally the key tool for the specification of the monitored object's technical condition.

Therefore, it is logical that not only a multi-parametric approach in technical diagnostics, but also expanding technical and measuring capabilities of various methods of technical diagnostics lead to the fact that also these methods have become relatively independent scientific disciplines.

We can definitely state that towards the end of the 20th century the problem of saving of all forms of energy had become crucial especially in connection with the issues of environmental protection. It is obvious that this is closely related to the question of increasing operational reliability of machines and technological devices.

It is clear that the fundamental requirement on any rotating system or power unit is its maximum reliability which can be expressed in terms of operating savings and also in terms of long lifespan of the machine or device.

The most important tools of maintenance ensuring include the methods of technical diagnostics, which entirely affect the complete contents of maintenance. In practice, technical diagnostics represents the main instrument of control, inspection and revision activities, specifies the necessity and extent of repairs and belongs to the instruments and means of autonomous maintenance, where it evaluates compliance with the principles of correct operation.

Diagnostic methods also include an internal inspection of machines, so called borescopy. Borescopy is a method involving a human eye to inspect, assess and evaluate qualitative marks of products. It is a non-invasive method of visual inspection of interior parts of machines and devices. This method is used to determine functioning and technical condition of interior parts of machines. While all other nondestructive testing methods provide indications that require interpretation, during visual examination qualitative features such as material discontinuities, shape malformations and surface quality defects are directly observable.

Use of this diagnostic monitoring method is especially important in continual 24- hour operation in the energy industry.

Monograph is focused on industrial diagnostics, machine borescopy in a selected organization. It aims to highlight the importance of machine diagnostics quality and their reliability increasing, based on performed borescope inspections of turbomachinery in combined cycle in this selected organization. It provides some recommendations on further operation of technological equipment and also deals with proposal of evaluation procedures and results processing with demonstrable final evaluation.