VIBRATION DIAGNOSTICS IN MANUFACTURING SYSTEM WITH WATER JET TECHNOLOGY

by

Štefánia SALOKYOVÁ

Juraj RUŽBARSKÝ

Tibor KRENICKÝ

VIBRATION DIAGNOSTICS IN MANUFACTURING SYSTEM WITH WATER JET TECHNOLOGY

Reviewers:

prof. Ing. Libor Hlaváč, Ph.D.

doc. Ing. Miroslav Müller, Ph.D.

prof. Ing. Stanislav Fabian, CSc.

Edition of Scientific and Technical Literature

Štefánia Salokyová, M.Sc., PhD.,
Assoc. Prof. Juraj Ružbarský, M.Sc., PhD.,
Tibor Krenický, RNDr., PhD.

This monograph has been supported by the projects KEGA 027TUKE-4/2014 and VEGA 1/0381/15.

ISBN 978-3-942303-35-4

CONTENTS

PREFACE								
IN	ITRODU	стю	۷	7				
1	UNCONVENTIONAL MACHINING METHODS							
	1.1	CLAS	SIFICATION OF UNCONVENTIONAL MACHINING METHODS	9				
2	DESCRIPTION AND CHARACTERISTICS OF WATERJET TECHNOLOGY							
	2.1	Basic	ASIC PRINCIPLE OF METHOD OF WATERJET TECHNOLOGY					
	2.2	BASIC METHODS OF MATERIAL MACHINING						
	2.2.1	1.	Pure Waterjet Machiningn	14				
	2.2.2	2.	Abrasive Waterjet Machining	15				
	2.3	TYPE	S OF APPLIED JETS	16				
	2.3.1	1.	System of Pulsating Waterjet	16				
	2.3.2	2.	System of Continual Waterjet	16				
	2.3.3	3.	System of Cavitation Waterjet	17				
	2.4	ТЕСН	NOLOGICAL UNIT OF A WORKSTATION FOR ABRASIVE WATERJET CUTTING	17				
	2.4.1	1.	Hydraulic Unit	18				
	2.4.2	2.	Hydraulic Pump	19				
	2.4.3	3.	Hydraulic Pump	19				
	2.4.4	1.	Accumulator	20				
	2.4.5	5.	Filters	20				
	2.4.6	5.	Cutting Head	20				
	2.4.7	7.	Waterjet Nozzle	22				
	2.4.8	3.	Abrasive Waterjet Nozzle	22				
	2.4.9. 2.4.10.		Coordinate Table	23				
			Water Collector	25				
	2.4.1	11.	Abrasive Feeder	26				
3	PAR	AMET	ERS INFLUENCING THE MACHINING	28				
3.1 Physical and Hydrodynamic Principles of Liquids		ICAL AND HYDRODYNAMIC PRINCIPLES OF LIQUIDS	28					
	3.2		NOLOGICAL FACTORS INFLUENCING THE ABRASIVE WATERJET PROCESS					
	3.3		METERS OF INFLUENCE IN WATERJET TECHNOLOGY					
	3.3.1	1.	Dependent Technological Parameters	30				
	3.3.2.		Independent Technological Parametrs	31				

4 METHODOLOGY OF MEASUREMENT AND METHODS OF EXAMINATION				
	4.1 CON	DITIONS OF EXPERIMENT PERFORMANCE	42	
	4.2 Pro	CEDURE OF EXPERIMENT PREPARATION	43	
	4.2.1.	Elaboration of Plan of Experiments	43	
	4.2.2.	Preparation of the Individual Mass Flow Rates by the Feeder	45	
	4.2.3.	Preparation of the Individual Examined Abrasive Mass Flow Re	ates	
	for the Pr	edetermined Sets of Experiments with Weighing	48	
	4.2.4.	Installation of the Abrasive Material Holder and Feeder	48	
	4.2.5.	Installation of a Sensor of Vibration Acceleration on a Technol	-	
	Head			
	4.2.6.	Fixation of the Cutting Material onto a Working Table WJ 102		
	ΕΚΟ			
	4.2.7.	Connection of a Modular system NI 9233 by USB 2.0 to a Port		
	•	r (LENOVO Z560)		
	4.2.8.	Triggering of Pump PTV 19/60 with a Multiplier		
		CEDURE OF PROCESSING AND ASSESSMENT OF THE MEASURED VALUES		
	4.3.1.	Processing of a Vibration Signal by a Modular System and by t		
		on of SignalExpress		
		Processing of Digital Record by the Program of LabView and b Editor of Microsoft Excel	-	
	u Tubului		54	
5	5 ASSESSMENT OF SETS OF EXPERIMENTS			
	5.1 Asse	ESSMENT OF THE FIRST SET OF EXPERIMENTS	57	
	5.1.1.	Assessment for Feed Speed of 50 mm/min	57	
	5.1.2.	Assessment for Feed Speed of 100 mm/min	75	
	5.1.3.	Assessment for Feed Speed of 50 and of 100 mm/min	94	
6	MATHEN	IATICAL MODEL	97	
	6.1 Met	HODS AND PROCEDURES OF THE MATHEMATICAL MODEL CREATION	97	
	6.2 MAT	THEMATICAL MODEL FOR SIMULATION	101	
7	TRANSFC	PRMATION OF MATHEMATICAL MODEL	103	
	7.1 Simi	JLATION PROGRAM FILE	103	
	7.2 Simi	JLATION PROGRAM VERIFICATION	104	
	7.2.1.	Verification of Simulation Program SP01	104	
	7.2.2.	Verification of Simulation Program SP02	105	
7.2.3.		Example of Simulation	106	
8	SPHERES	OF DESIGN RESULT APPLICATION	108	

9	ANTICIPATED BENEFITS OF KNOWLEDGE REALIZATION	109
10	CONCLUSION	111
11	REFERENCES	113

Preface

The scientific monograph represents results of a long-year cooperation between the Department of Manufacturing Processes Operation (DMPO), Faculty of Manufacturing Technologies with a seat in Prešov, Technical University of Košice and the Fluid Ray Department of VŠB - Technical University of Ostrava. The cooperation resulted in numerous scientific outputs in the form of projects, articles, monographs and theses. Presented monograph prepared with support of the projects KEGA 027TUKE-4/2014 and of VEGA 1/0381/15 is aimed to enhance this series.

The monograph summarizes the knowledge and experience acquired during research work closely connected with several doctoral studies performed at DMPO and materials collected during further education activities in the field of monitoring and diagnostics of manufacturing systems operation.

The aims of the scientific monograph are formulated in two directions. Significant is to mediate basic knowledge on measurement and assessment of vibrations as well as on technology of waterjet. Therefore, the scientific monograph offers a review of topics being important for creating of basic idea about measurement and assessment of vibrations in practice, about basic principle of waterjet technology functioning and about influence of the selected technological factors upon size of vibrations in machining by waterjet technology.

The monograph is intended for academic workers, students of higher study levels and professionals with interest of getting deeper knowledge in the field.

Authors

Introduction

At present, the machining ranks among the inseparable processes of material treatment. Our concern is to achieve the utmost productivity in manufacturing assured by high precision and quality surface. This is the main reason for the machining having been subjected to a long-term development to reach current version. However, a few undesirable factors inevitable to be defined at first influenced the development. One of such factors is represented by vibration or oscillation of machining tools occurring during machining of material and is frequently referred to as the most serious problem in further improvement of machining process.

Vibration diagnostics deals with the analysis of vibration. This branch utilizes diverse sensors and specialized software to acquire inevitable information on machining tool condition. The basic aim of vibration monitoring is to acquire information on operation and technical condition for the purpose of assurance of planning and control of maintenance. The main reasons for vibration measurement in practice can be, for instance, verification of dynamic loading of the tool or of its parts, prevention of resonance inducing in important parts of the tool, possibility of localization and damping or isolating of vibration sources. The vibration measurements are also performed to provide diagnosis without dismantling, monitoring of operation conditions of the tool or to assure he possibility of computer modelling and verification.

The monograph is divided into ten parts. The first part deals with the issue of unconventional technologies. The second part entitled Description and Characteristics of Waterjet Technology includes the topics such as principle and methods of waterjet machining or types of the applied jets. The final section of the second part of the monograph is devoted to the technological unit of a workstation for abrasive waterjet cutting. The Parameters Influencing the Machining is the title of the third part describing the basic physical, hydrodynamic, and technological factors affecting abrasive waterjet process. The detailed description involves the issue of specification of the parameters influencing the waterjet technology. The fourth part of the monograph entitled Methodology of Measurement and

Assessment of Experiments contains basic information on performance of the individual experiments such as, for instance, measurement conditions, procedures related to experiment preparation or procedures of processing and assessment of the measured values. The detailed assessment of the individual sets of experiments is presented in the fifth part of the monograph. The sixth and the seventh parts of the monograph pay attention to creation of a mathematical model and consequently to transformation of a model into the simulation program. The monograph presents actual theoretical knowledge and the results of relevant research.