TECHNICAL UNIVERSITY OF KOŠICE

FACULTY OF MANUFACTURING TECHNOLOGIES WITH A SEAT IN PREŠOV

ON GEAR HOBS PROFILING

by

Slavko Pavlenko Juliána Litecká Ľuba Bičejová

Abstract

The monograph is intended principally to research and developing workers and experts in the field of gear manufacturing tool research, development and design and to students of technical universities. It documents theoretical knowledge of envelope method application for in-feed hob profile design. It describes general theoretical principles of envelope methods and abilities for application of designed mathematical models for analysis of technological factors impact to gearing manufacturing accuracy.

It summarizes the author's scientific and research activity results and is published with support of the grant 058TUKE-4/2012.

Key words: *in-feed hob, gear manufacturing, accuracy of profile, manufacturing productivity*

Reviewers: Prof. Vladimír Klimo, M.Sc. PhD. Dr.h.c. prof. Karol Vasilko, M.Sc. PhD. Prof. em. Emil Ragan, M.Sc. PhD.

Edition of Scientific and Technical Literature

© Prof. Slavko Pavlenko, M.Sc., PhD., Juliána Litecká, M.Sc., PhD., Ľuba Bičejová, M.Sc., PhD.

ISBN 978-3-942303-19-4 EAN 9783942303194

CONTENTS

INDEX OF USED SYMBOLS INTRODUCTION	1
1 CONSTRUCTION OF GEAR HOBS	2
1.1 Front Involute Gearing Construction Design Solutions	2
1.1.1 Solid hobs	2
1.1.2 Gear hobs with cutting elements	4
1.1.3 Stacked hobs with cutting elements	4
1.1.4 Tool systems for gearing	5
1.2 Gear hob design and calculation	6
1.2.1 In-feed structural element design procedure	6
2 GEAR WHEEL THEORY	15
2.1 Evolvent creating principles	20
3 BASIC METHODS OF PRIMARY TOOL SURFACE SPECIFICATION	24
3.1 Basic kinematic schemes of machining	24
3.2 Kinematic schemes of creating	25
3.3 Methods of tool primary surface definition	26
4 GEOMETRICAL THEORY OF GEAR WHEEL TOOTH CONJUGATED SUBFACES	28
4.1 Normal Curvature and Goodesia Torsion	20
4.1 Normal Curvature and Belative Geodesic Torsion	20
4.3 Envelope of a Family of Surfaces	30
4.3.1 Envelope Contact Equation and Contact Curve	39
4.3.2 Characteristic point edge of regression	44
4.4 Notes on relative motions	49
4.5 Transformation of Coordinates	57
4.6 Conjugated surfaces	61
4.6.1 Contact equations	62
4.6.2 Conjugated surfaces	63
4.6.3 Cylindrical gears	67

5 TH	IEORY OF N-PARAMETRIC ENVELOPE METHOD	76
6 GI BA	EARING PROFILE GENERATION BY MEANS OF ASIC RACK	80
6.1	Basic rack profile geometry analysis	81
6.2	Rack motion transformation in gear wheel coordinate system	86
6.3	Specification of envelope curve formed by rack profiles	90
6.	3.1 Influence of the basic rack profile upon final tooth profile	91
7 GI	EAR HOBS PROFILING	96
7.1	The Hob Primary Surface Analysis	97
7.2	Basic Rack Surface Analysis	104
7.3	Setting of the hob profile deviation from the basic rack	108
7.	3.1 Parameter transformation into hob coordinate system	
	parts.	109
7.4	Analysis of the hob profile deviations from the basic rack	112
7.5	Conjugated surface between the hob and the rack	122
REFE	CRENCES	136