Quantitative Linguistic
Computing with Perl|
by

Fan Fengxiang

Deng Yaochen

2010
RAM-Verlag

Studies in quantitative linguistics

Editors
Fengxiang Fan (fanfengxiang@yahoo.com)
Emmerich Kelih (emmerich.kelih@uni-graz.at)
Reinhard Kohler (koehler@uni-trier.de)
Jan Macutek (jmacutek @yahoo.com)
Eric S. Wheeler (wheeler@ericwheeler.ca)

1. U. Strauss, F. Fan, G. Altmann, Problems in quantitative linguistics 1. 2008,
VI + 134 pp.

2. V. Altmann, G. Altmann, Anleitung zu quantitativen Textanalysen. Methoden
und Anwendungen. 2008, 1V+193 pp.

3. I.-1. Popescu, J. Macutek, G. Altmann, Aspects of word frequencies. 2009, IV

+198 pp.

4. R. Kohler, G. Altmann, Problems in quantitative linguistics 2. 2009, VII + 142
pp.

5. R. Kohler (ed.), Issues in Quantitative Linguistics. 2009, VI + 205 pp.

6. A. Tuzz, |.-1. Popescu, G.Altmann, Quantitative aspects of Italian texts. 2010,
IV+161 pp.

7. F. Fan, Y. Deng, Quantitative Linguistic Computing with Perl. 2010, VI11+201
PP

ISBN: 978-3-942303-01-9
© Copyright 2010 by RAM-Verlag, D-58515 L tidenscheid

RAM-Verlag
Stittinghauser Ringstr. 44
D-58515 L iidenscheid
RAM-Verlag@t-online.de
http://ram-verlag.de

mailto:fanfengxiang@yahoo.com
mailto:emmerich.kelih@uni-graz.at
mailto:koehler@uni-trier.de
mailto:jmacutek@yahoo.com
mailto:wheeler@ericwheeler.ca
mailto:RAM-Verlag@t-online.de
http://ram-verlag.de

Preface

Empirical research in linguistics, in particular in quantitative linguistics, relies to
a high degree on the acquisition of large amounts of appropriate data and, as a
matter of course, on sometimes intricate computation. The last decades with the
advent of faster and faster electronic machinery and at the same time growing
storage capacities at faling prices contributed, together with advances in lin-
guistic theory and analytic methods, to the availability of suitable linguistic
material for all kinds of investigations on all levels of analysis.

Ideally, a researcher in quantitative linguistics has enough programming
knowledge to acquire the data needed for his/her specific study. Thisis, however,
not always the case. If professional programmers can be asked for help, most
problems may be overcome; however, also this way is not always possible. And
sometimes, it may be more awkward to explain atask than do perform it.

The selection of the appropriate programming language should not be
conducted by taste or familiarity (as it is, unfortunately, very often even among
programmers); instead, at least the following criteria should be taken into ac-
count:

1. Quality of the language. There is a number of quality-related properties of
a programming language such as ability of preventing programming
mistakes, readability of the code, changeability, testability, learnability.
Unfortunately, these and other properties are not independent of each
other; some of them compete (e.g. efficiency is always a competitor of
most other properties) whereas others co-operate (e.g. readability ad-
vances most of the others). A programmer has to decide on priorities of
the quality properties with respect to the individual task and application.

2. Nature of the problem. Every programming language has advantages and
disadvantages also with respect to the task to be performed. One of the
criteria often cited is the old distinction between low-level (close to the
basic processor instructions and to the memory organisation of the
computer) and high-level languages (with concepts close to the problems
or algorithms). However, matters of efficiency etc. do not play arole any
more (at least in the overwhelming majority of applications) since the
compilers and their optimisers produce better code than most human
programmers would be able to do. But there are still concepts and tasks
that can be expressed in one language better than in another one, e.g. only
few programmers would prefer a scripting language for the programming
adata base.

3. Size and complexity of the problem. The larger a problem and the higher
its complexity the more relevant become the quality properties of the
language. If, e.g. severa persons work on the same project, readability of
the code is of fundamental importance but even if a single programmer

does all the coding of a complex problem he/she will encounter problems
with his own code after some time if the programming language allows
code in a less readable form. In any case, corrections, changes, and
maintenance of a program depend crucially on some of the quality prop-
erties.

. Security aspects. This is a simple matter: If the application you write is

supposed to run in a environment that is accessible to potential attacks
(e.g., the Internet or a computer network or if other users have access to
the computer) and if the data your program works with should be
protected, then a special focus should be put on security properties of the
programming language. Scripting languages, e.g., are known to be frail, as
a rule. You should make sure that the language you use has at least
protection mechanisms you can switch on. Surprisingly, this aspect is very
often neglected — even by institutions such as banks (Internet banking).

. Reliability of the compiler/interpreter/libraries. Many popular languages

are not defined. Instead, ‘reference implementations' are offered. How-
ever, to be sure how a language element works you would have try it out
in every possible form of use and combination with other elements — an
unrealistic idea. Another aspect is even more significant in practice: Some
languages, among them some of the currently most popular ones, are
subject to substantial changes every now and then. The user of such a
language is witness and victim of aripening process (or mere experiment-
ation): If your program will work with the next version of the language, is
more or less a matter of chance. You should consider how much harm
such a situation would do to your project if you decide to use a language
that is not defined.

. Frequency of application. It matters whether your program is an ad-hoc

solution and will be used just once or a few times to evaluate some data
and then will be discarded or whether it is meant to be useful for alonger
time and may be changed and adapted for varying conditions. In the first
case, not so much value is to be set on quality properties of the language;
immediate availability of a practical solution may then come into fore-
ground. In the latter case, however, readability, changeability and other
properties play a bigger role.

. Intended users of the software product. Similarly, if you alone will use a

program, some disadvantages such as missing robustness or a bad user
interface would not constitute a serious problem as you will exactly know
which behaviour you have to expect and how to circumvent inelegance or
even mistakes. If, on the other hand, an unknown number of unknown
persons will use it you should base you product on reliable tools, among
them the language you formulate your solution in.

The main problem, however, quantitative linguists will have to face — independ-
ent of how they are inclined to weight the criteria discussed above — is probably

[l
that they fail to have an overview about programming languages and their pro’'s
and con’s. Whenever a programming layman is asked for advice the probability
IS high that the answer will depend on personal taste and familiarity with a
language and possibly on its current popularity. Y ou should, at least, know what
criteria to base your decision on; with an idea of your priorities at hand and after
discussing them with a programming expert, you can increase the chance to
obtain agood hint.

Perl belongs to the so-called scripting languages. To run a program written in
Perl you need the Perl interpreter; it has to be installed on your computer before
the program can be executed. The reason is that such a program is interpreted,
line by line, each time it is started as opposed to compiled programs which can
run without any interpreter. There are, again, pro’s and con’s of either solution.
Scripting languages have, e.g. the advantage that a program can change its own
logic and easily adapt its data structures while it runs, to an extent which is
impossible with compiled programs — a comfortable but also potentially dan-
gerous facility.

Linguists fancy, in particular, the powerful language elements of Perl,
which enable a programmer to write powerful programs in very short time. This
property is especially useful for string and text manipulation and anaysis
because many ready-made tools for string handling are ‘innate’ to the language.
Advanced programmers will find it even more useful for Internet programming.
A clear disadvantage is the not so readable program text which makes finding
and correcting of mistakes sometimes awkward in long and complex programs.
Therefore, careful formulations and exhaustive comments within the program
code are strongly recommended. If these caveats are taken into account Perl can
be used with much success with little effort — and make alot of fun.

Reinhard Kohler

Table of Contents

PIEIACE ... e I
1 INEFOAUCTION ...t 1
1.1 Quantitative linguistics and Perl...........ccooeiiiiiniiie e 1

1.2 Characteristics of this book and its intended readerscccocevvevienennen. 2

1.3 Downloading and installationcceveiiiieniniesee e 3

1.4 Program EAITONcoouiiiiiieieie e e 7

1.5 Conventions used in this DOOK.............ccciiiiiiiiie, 8

2 Perl variables and Operators..........ccoeiiieiieie i 11
2.1 Perl variables ..o 11

2.2 Value assignment t0 Variables ... 11

2.3 Perl numeric operators and fUNCLiONScccovvrieiinienene e 13
2.3.1 Math OPEIatOrS.ceiveiieiecieeie et 13

2.3.2 Math TUNCHIONS.c.veiiiiieie s 16

2.3.3 NUMEriC COMPAariSON OPErAtOrSccuerverieerierieeriereesieseesieseeseeas 19

2.4 String operators and string comparison OPerators..........ccoocevveveereeeenne 21
2.4.1 SEING OPEIALOISveiuiiiieieeieetesiee sttt 21

2.4.2 String COMPariSON OPEIatOrS.eivviveruereerieseerieseesieareeseeeeeseens 22

2.5 The 10gical OPErator........cooi i s 23
EXBICISES ..ttt 24

3 INPUL AN QUEPUL ... st 26
3.1 Input at the command liNEc.ccceeieii e 26
3.1.1 The use Of @ARGV ..o 26
3.1.2The uSe OF STDINc.occiiiiiiiienire s 27

3.1.3 Command line file INPUL........cccooieiiiiiie e 28

3.2 Inputting files inside a Program..........ccccceeveieivsiesieeie e 29

3.3 Some string manipulation fUNCLIONS..........ccccvvvieieiivee e 31

34 APPHICALIONS ... e 34
EXBICISES ...ttt 40

4 Regular expressions: DasiC STFUCTUINE...........coceviiieiiie e 41
4.1 Operators for regular XPreSSIONS.........coerveeereeriereeeeseeeesreeeeseeseeenes 41
411 =~ N0 M/ i 41
BL2SH oot 42

A LB oo 45

4.2 Regular expression quantifiers and other operatorscccccevevveeenne. 49
4.2.1 The general quantifiers and wild card...........ccoccoeveviiiniiinnnn. 49

4.2.2 The greediness of the quantifiers * and +ccccooceveveveiverene 52

4.2.3 The alternative operator, anchors and the escape operator 53

O I N o] o] o= [0 TSR 55
4.3.1 TEXE tOKENIZET ... e 55

4.3.2 Computing syllabic word length ... 56

4.3.3 Removal of HTML codes in teXtS......cccccvvivininnenie e 57

B I CISES ettt e e e e e e ——————————aaaaaaaaaaan 60

Vi

5 Regular expressions: advanced tOPICS........cocvvviieriveresieeie e 61
5.1 Metacharacters for regular eXpressions..........cccoveverernenieenesiee e 61
5.2 Special VariablesSccooiiiiiiiece e 63
5.3 BaCK refereNCINgGcoueiieiiiie e 65
5.4 QUANLITYING EXPIrESSIONScveiveeieiieeiesieeee e e see e sre e see e sre e e eeenes 66
5.5 String manipulation functions and the for program control structure..... 68
5.6 APPHICALIONS ... e e 71

5.6.1 Extraction of POS tags.......ccccoveviiiiieiiie i 71
5.6.2 Making concordance for a teXt..........ccovreeiinienienie e 72
5.6.3 Extraction of lexical bundles from texts.cc.ccoovvvvniiinininennn, 73
5.6.4 A Chinese tOKENIZENccuiiiiiiiieieciee e 75
G (o 131 PSSP PTRPP 77

RN - | TSRO 79

6.1 AITAY CrEALIONccvviiiieiecciee et ettt e e ste et e e et e e ste e sneesaeenreesnne s 79
6.1.1 One dimensSional rraysS.........ccccoeeiiieereiieiene e 79
6.1.2 Multi-dimensional arrayscccooveieereiieiiesese e 82
6.1.3 Converting teXts INt0 AITAYSccccoereerererrienee e see e 84

6.2 Functions for array OPerationsS...........ccceceerereeresieeseseeseseeseeeesee e e 85
6.2.1 Functions for array input and QUEPUL.............ccceereririininicniees 85
6.2.2 Array insertion, truncation and deletion..............ccoccevveiereeinennnnn 88
6.2.3 SOMING AN AITAY ...oveeiieiiieie ettt eneas 89

6.2.4 The anonymous variable and the join, map and grep functions... 91
6.3 Combining identical array elements and random sampling from an array

.. 94

OB N o] o] 1T o] USSR 97
6.4.1 Selecting words from a wordlistccccovvvvieiieniene e 97
6.4.2 Turning a text into bigrams ..o, 98
6.4.3 Turning a text into a list of word types with frequencies........... 100
6.4.4 Computing sentence length distribution..............ccccccooviivriennenn. 101
EXBICISES ...ttt 102
T HASN TADIES ... 103
7.1 Hash input and OULPUL........cc.eoieiieiececc e 103
7.1.1 Manual input and OULPULccooeeiieierrce e 103
7.1.2 Hash input and output using arrays and functions..................... 106
7.1.3 The use of values(), each(), exist() and delete().........cccceevvrennnn 110

7.2 Hash OPEratioNScoiiiiiiiieiee e 112
7.2.1 Converting hash elements into an arrayocceeeeevveeieeiieennnnns 112
7.2.2 Combining two or more hashes togetherccociiniiiinnnne 113
7.2.3 Hash COMPANISONSecuveieiieeiieeiiesieseesieesie e enee e esee e eesse e e 115
7.2.4 Computing value freqUENCIEeS.cccevvrieiene i 117

I AN o] o] 1 o%: 11 To] SR 118
7.3.1 Computing per word entropy of English.........ccccccooviviinnnnnnnne. 118

7.3.2 Making a word frequency SPectrum...........ccccevvvveeveervereesnennenn 119

7.3.3 LEMMALIZALION.cveiiieieieieecee e 120
7.3.4 Lexical comparison between two texXtSc.ccevvereeiiieiiieeninens 122
EXBICISES ..ttt e 124
8 Subroutines and MOUIESc.ooi i 126
8.1 SUDIOULINES ...t 126
8.1.1 The haSiC SIIUCIUIEcceeivieiiieciece e 126
8.1.2 Parameters of SUDIOUtINeSccovveviiiii i 127
8.1.3 The use of return() in SUBrOULINES.........ccovevieiiiieieecicce e 129
8.1.4 Localization of variables in subroutinescccccvoveiennnnnne 130

8.2 MOTUIES ... s 131
8.3 RETEIENCES.eeitieciie et 135
8.3.1 MaKing referenCesc.coviieiiiieiesee e 135
8.3.2 Dereferencing for scalar variables and references..................... 136
8.3.3 Dereferencing fOr arrayscccocevvevervsreeseesese e seenee e 137
8.3.4 Dereferencing for hashes..........cccoviiiiiiiii e 139

8.4 Use of references in subroutines and modulesc.ccocvvvninivnnnnnn. 140
8.5 APPHCALIONS ...t 142
8.5.1 Computing arc Iength.........cccoooveveiiviiiice e 143
8.5.2 A module for removing non-alphanumeric characters............... 144
8.5.3 A lexical compariSon Programccceeveeereerieseereeseeseesseeeenns 145
G (o 11 USROS 149
9 Directory and file managementc.cccoooveviiicie e 150
9.1 Directory ManagemMentcoverereerieieseeeeseeee e e see e 150
9.2 File Management.......c.ccviieiiiiesicee e 151
9.3 Formatting OUtPUL fIlESocveiieie e 154
9.3.1 Outputting data in the original format.............cccccveveiiveiereennenn, 154
9.3.2 Arranging data in left-justified columnsccccovviiiiiieennns 155
9.3.3 Arranging data in right-justified columnsc.ccooeiininnnne 156
9.3.4 Arranging data in centre-justified columns.............ccccccveiveenenn 157
9.3.5 Formatting data that has line breaks.............cccocvniiiiiiiinnn 159
9.3.6 Producing page heading and paginating output files 161

OB AN o] o] 1o 11 o] S 164
9.4.1 A page-formatting programcccecerveeereereseeseeseeseeseeeneens 164
9.4.2 Computing vocabulary growth and number of hapax legomena166
9.4.3 A program for computing Word range..........ccecevverereereeseeeneenn 171
G o 11T USSP 175
Appendix Model answers t0 the EXErCISES.......ccuvviiveerieereiiere e se e 177
EXercises of Chapter 2.........ooi i 177
EXercises of Chapter 3.......ooivoii i 177
EXercises of Chapter 4.........ooo oo 181
EXercises of Chapter 5.......ccovei i 183
EXercises of Chapter 6.........ooviiiiieieiiee e 186

EXercises Of Chaper 7........ooveiiiiee e 188

VIl

EXercises of Chapter 8.........cocveiiiieeeieee e
EXercises of Chapter 9.......oo i

Index

