Problems in Quantitative Linguistics 1

by

Udo Strauss Fengxiang Fan Gabriel Altmann

Second edition

2008 RAM-Verlag

Studies in quantitative linguistics

Editors

Fengxiang Fan(fanfengxiang@yahoo.com)Peter Grzybek(grzybek@uni-graz.at)Ján Mačutek(jmacutek@yahoo.com)

1. U. Strauss, F. Fan, G. Altmann, *Problems in quantitative linguistics 1*. 2008, IX +132 pp. (2nd edition).

ISBN: 978-3-9802659-4-2

© Copyright 2008 by RAM-Verlag, D-58515 Lüdenscheid

RAM-Verlag Stüttinghauser Ringstr. 44 D-58515 Lüdenscheid <u>RAM-Verlag@t-online.de</u> <u>http://ram-verlag.de</u>

Introduction

This book is the first volume in the series "*Problems in Quantitative Linguistics*", which presents selected proposals for research, problems, questions, hypotheses, and exercises taken from various quantitative-linguistic fields. Only very few of the issues presented here have been studied in previous investigations; each of them is of serious scientific interest and can lead to findings, which may contribute to the construction of a complex linguistic theory.

The problems are of different degree of difficulty and cause different effort if tackled. Many of them can help students in the choice of themes for theses, academic teachers in finding appropriate exercises and examples for their courses, or researchers looking for new enterprises. Most of the hypotheses afford an opportunity to form an original contribution to one of the QL fields by finding a first answer to a given question, a solution to problem, a new method or approach, or an application of existing ones to new linguistic data.

The great majority of the problems concern interrelations between two or more linguistic entities. The reader is asked to set up exact definitions, quantifications and measurement methods, to collect data, perform tests, find an empirical function or derive a function from theoretical assumptions; a complete solution, however, is not always required. In the few cases where a solution or method can be found in the references the reader should feel encouraged to test it on data from other languages, text types, dictionaries etc. or to find an alternative solution.

The individual problems are presented in a unified form throughout the book as follows: (1) A *hypothesis* or a *problem* is given together with sources that should be read. These sources often provide preliminary analyses of the problem and further references. (2) A *procedure* is proposed with suggestions for the appropriate steps in the analysis. Sometimes, an in-depth analysis of the presented problem is given. (3) *References* are provided where the interested reader can find the first mention or a deeper analysis of the problem. A corresponding remark indicates if a reference is mandatory before a problem can be approached.

The instructions given with the problems do not always contain readymade formulas; in these cases, the reader is referred to the references or to statistics text books.

The following general recommendations may help with a successful work:

1. Linguistic examples cannot be considered as evidence of a phenomenon, pattern, trend or law. The only appropriate empirical basis consists of data from complete objects (e.g. texts) or random samples.

- 2. A correlation analysis is not acceptable as a result; the same is true of a simple test of differences between objects. You should rather find at least an empirical function.
- 3. English or German are fine but we recommend enriching your study by at least one other language.
- 4. Empirical findings are often prematurely generalised. Corresponding empirical statements should be tested on several languages, text types, authors etc. depending on the kind of hypothesis.
- 5. Concepts, quantifications and measurements must be defined in an absolutely explicit and unequivocal way. Avoid concepts you cannot operationalise with sufficient exactness.
- 6. Always try a derivation of the function or distribution you assume for your data from reasonable theoretical assumptions. Often, proportionality considerations may be successful as a number of hypotheses in synergetic linguistics have shown.
- 7. If a function or distribution seems inadequate with respect to your data, recheck your data (sources, pre-processing, amount, artificial factors etc.), calculation, computational procedures – and your assumptions. Change or correct whatever turns out to be wrong and try once more.
- 8. If your mathematical model fails again: sometimes, there are some boundary conditions which affect a relation (although we think that the law of gravitation is valid we observe that some objects, e.g. birds, do not drop). Find such boundary conditions in your case and consider them as independent variables. Re-formulate your hypothesis correspondingly and start again.
- 9. No hypothesis should be definitively rejected or definitively accepted. Corroboration is a matter of degree.
- 10. To clarify your thoughts, work out a diagram of the relationship including parameters and requirements (cf. the notation in synergetic linguistics).
- 11. Keep in mind that data are constructs, i.e. to some extent artificial. Data collection consists in transforming facts via hypotheses (or a weaker form of assumptions or expectations) into statements. Hence, one should first set up an explicit and plausible hypothesis then search for data.
- 12. If it is difficult to determine which variable is dependent and which is independent, try to integrate both variants in a larger control cycle or at least test both directions.
- 13. After solving several problems try to integrate all of them in a control cycle. Fill the missing vertices and edges by hypothetical ones and try to find them empirically.
- 14. Never give basic data in the form of percentages; always present absolute numbers.
- 15. When a problem is solved, do not consider it the final solution; see it as part of a greater perspective and try to describe this perspective.

- 16. If you think you need a classification do not just classify mechanically using a method at hand. Instead, try to set up a theory and deduce an appropriate classification from this theory.
- 17. Do not use functions with many parameters (e.g. polynomials) because later on these parameters will have to be interpreted (i.e. adhere to "Occam's razor").
- 18. If possible, as linguist, cooperate with a programmer and a mathematician. If you are mathematician you should seek an experienced linguist, otherwise a good mathematical model may be developed – however without linguistic interpretation and hence without use.
- 19. Try to apply solved problems introduced in this book using new data (from other languages) so that existing theories can be corroborated or rejected.
- 20. Do not consider linguistic units as given a priori. Define units operationally in such a way that they can be used in hypotheses, even if their segmentation might seem somewhat artificial. Keep in mind that those linguistic units are theoretically prolific which can be used in formulating laws (not in grammatical rules).
- 21. Always prefer functions or distributions with a good theoretical foundation to ones which possibly displays a better fit but have no linguistic background. i.e. use empirical functions only at the beginning of a research.
- 22. There are nine chapters in this book. The contents of the individual chapters are not strictly homogeneous but furnish a relatively broad view of possible problems that can be solved using quantitative methods. Within each chapter, the problems are arranged alphabetically. Some problems have been analysed in more detail. Neither the chapters nor the problems need to be read successively; one can choose a problem according to one's own preference and specialisation.

Acknowledment

We are very obliged to Reinhard Köhler who patiently read the whole book, corrected our style and our Pidgin, improved some argumentations and gave us a number of useful hints. The rest consists of our besetting sins.

Contents

Introduction	
Chapter 1. Phonemics and script	1
Accent and frequency	1
Canonical word structure	1
Consonants and clusters	2
Distribution of canonical forms	2
Distributional calculus	3
Distributional gaps	4
Evolution of script complexity	4
Exploitation of canonical forms	5
Letter frequency	5
Measurement of distinctness	6
Measurement of ornamentality	6
Phoneme frequency and word frequency	7
Phoneme inventory and word length	7
Power law	8
Ranking syllable types	9
Script complexity	9
Script simplification	10
Syllable frequency	10
Syllable structure	11
Tendency towards vowel harmony	13
Two-dimensional syllable structure	14
Word length and supra-segmentals	15
Chapter 2. Grammar	16
Behagel's "law"	16
Co-occurrence and cohesion	17
Cotextuality and variation	18
Frequency and case	18
Frequency and cohesion	19
Frequency and derivation	19
Frequency and irregularity	20
Frequency and valency	21
Frequency of sentence patterns	22
Grammaticalisation	22
Morph frequency	22
Morpheme polysemy and morpheme frequency	23
Morphological productivity of stems	23

VI	
Sequential word class frequency	24
Verb classification	25
Verbs and persons	25
Word class distributions	27

28

Chapter 3. Compounds and lexicology

Age and compounding propensity	28
Collocations	28
Compound length and component length	29
Compound length and compound cotextuality	30
Compound length and polysemy	30
Compound length and semantic correspondence	31
Compounds and semantic correspondence	31
Compound forming and associations	32
Compound forming and emotionality	32
Cotextuality and compounding propensity	33
Dissortativity of compounding	33
Distribution of compound length	34
Distribution of synonyms	34
Increase of loan words	35
Lexical chains	36
Lexical networks	37
Stem length and compounding propensity	38
Word length and synonymy	38

Chapter 4. Textology	40
The association graph of a text	40
Autosemantic pace filling	40
Carroll's vector	41
Constraint measure for text	42
Cotextuality and frequency	42
Distances between equally long sentences	43
Distances between lexemes	43
Euphony	44
Hirsch-Popescu-point problems	45
Hrebs	46
Hurst's exponent	47
Köhler's word length motives 1	48
Köhler's word length motives 2	49
Köhler's word length motives 3	50
Köhler's sentence length motives	51
Lorenz curve	51

	VII
Lyapunov coefficient	51
Minkowski sausage	52
n-Grams of length motives	53
Nominal style	54
Phonetic aggregation	55
Polylogue analysis	56
Popescu´s vocabulary richness	57
Ratios	58
Rhythmic units	58
Text difficulty	59
Thematic concentration	60
Tokemes and Lyapunov coefficient	61
Type-token relation	61
Verb profile	62
Vocabulary richness and references	64
Word frequency 1	64
Word frequency 2	65
Word frequency 3	66

Chapter 5.	Frequency and length	67
Distributi	on of word length 1	67
Distributi	on of word length 2	67
Distributi	on of word length and Ord's criterion	68
Frequency	y and compounding propensity	68
Frequency	y and irregularity	69
Frequency	y and letter utility	70
Frequency	y and markedness/complexity	70
Frequency	y and order in freezes	72
Frequency	y and phoneme complexity	73
Frequency	y and phoneme form	74
Frequency	y and production effort	74
Frequency	y and productivity	75
Frequency	y and reduction	75
Frequency	y and variety	77
Length an	nd frequency	78
Length an	nd polysemy	80
Length an	id word classes 1	81
Length an	nd word classes 2	82
Sentence	length and clause length	82
Word leng	gth and polytextuality	83
Word leng	gth and position in sentence	84
Word/mo	rph length and composition	85

VIII	
Chapter 6. Semantics, synergetics, psycholinguistics	86
Abstractness	86
Distribution of polysemy	87
Familiarity and frequency	87
Familiarity of slang words	88
Kanji frequency	89
Learning and complexity	89
Learning with children	90
Meaning and frequency	90
Morpheme inventory and morpheme polysemy	91
Morphology vs. phonemics	
Phoneme inventory vs. morpheme length	
Polysemy and compounding	
Semantic classes	93
Semantic diversification	94
Chapter 7. Typology	96
Entropy and synthetism	96
Homonymy and synonymy of affixes 1	97
Homonymy and synonymy of affixes 2	97

Inflection in general	98
Morph length	99
Popescu's typological indicator a	100
Root length and extent of derivation	101
Synthetism in language	102
Vocalic language	103
Word length and agreement	103
Word order and inflection	104

Chapter 8. General problems	105
Distributions	105
Entropy and inventory size	105
Fitting a distribution	106
Setting up hypotheses by means of factor analysis	106
Iconicity	107
Index formation	107
Menzerath's law	108
Naranan-Balasubrahmanyan distribution	109
Ord's criterion	109
Repeat rate and entropy	111
Sample size	111
The problem of infinity	112

	IX
Tightness/Cohesion	113
Zipf's and Zipf-Mandelbrot's law	114
Chapter 9. Research projects	115
Frumkina's law (Word occurrence in passages)	115
Skalička's typological system	117
Synonymy	118
Word frequency and collateral properties	121
Author index	123
Subject index	128