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0. Purpose and Method 

The Altmann Fitter is an interactive programme for the iterative fitting of 

univariate discrete probability distributions to frequency data. Its algorithm 

is based on the Nelder-Mead Simplex method with modifications and re-

finements. It aims at the analysis of data from all empirical scientific and 

technical domains and is optimised for application by practitioners. 

More than 200 individual probability distributions are defined and imple-

mented and can be used in various ways. The Altmann Fitter contains one of 

the most voluminous collections of distributions with information about all 

relevant properties of these distributions. These are automatically used for 

optimal data analysis. 

The mathematical procedures are automated, i.e. no initial estimators or 

other parameters have to be specified by the user (except a number of ex-

plicitly controllable distribution variants for special cases). The programme 

iteratively improves the goodness-of-fit until no better solution can be 

found.  The goodness-of-fit criterion for the iterative optimisation is based 

on the chi-square test. Nevertheless, several other criteria are evaluated and 

presented. A number of options and configurations enables the user to con-

trol the optimisation procedures. 

 

1. Requirements and Installation 

Altmann Fitter runs under all Microsoft Windows
®
 versions since Windows 

XP
®
 and including Windows 8

®
. For best performance, the computer should 

be equipped with at least 512 MB of RAM. 

To install Altmann Fitter, copy the file Altmann-Fitter v3.1.1 Setup.zip to 

your hard disk and extract the files. Then double-click on the file Altmann-

Fitter v3.1.1 Setup.exe and follow the instructions given during the installa-

tion. The Installer will propose a location on your hard disk for installation. 

You will be asked whether you wish to change the installation path. 
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2 Data Input 

Whatever you want to find out with the help of Altmann Fitter, it will be an 

analysis of a data set or a number of data sets. We will call a data set a fre-

quency distribution in form of two columns, of which the first specifies the 
numerical random variable and the second the number of observations. The 

Altmann Fitter expects data sets as text files with the simple structure shown 

in Fig. 2.1. 

 

Fig. 2.1: Structure of a data file 

The columns may be separated by one or more spaces or tabs. The lines 

must be separated by the DOS and Windows style 'end-of-line' codes 

(CRLF, or hex 0d0a), which is automatically given if you create your files 

under a windows operating system. If you import them from UNIX or Apple 

systems, a corresponding transformation may be required. 

Classes with zero frequencies such as the classes 7 and 8 in Fig. 2.1 can, but 

need not be given. The data must, however, be given in increasing order of 

the x-values. 

The numerical values of random variable (x) of the data set can begin with 

any positive number: with a 1 as in the above example, with a 0, or another 

value such as 4, depending on the nature of the random variable. Altmann 

Fitter will shift the probability distribution in an appropriate way if needed. 

You should, however, avoid empty classes, in particular in the beginning of 

the data. 

On the other hand, sometimes, an additional class at the end of the data with 

zero frequency can help to find a fitting distribution because this 'trick' in-

creases the number of degrees of freedom. 

The files are expected as text files with the file extension ".dat" as default. 

You can nevertheless load files with any extension by changing the standard 

file type from "*.dat" to "all files" in the file open dialog. 

The empirical data which are to be analysed are given as one or more data 

files. The Altmann Fitter loads your data when you click on the "open files" 

button (cf. Fig. 2.2), which shows an opened yellow folder and can be found 

on the left side of the data area. 

Data file structure 

How to prepare the 

data 

Additional class as 

trick for more de-

grees of freedom 

Load the data 
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Fig. 2.2: The "open files" button 

A click on this button opens the Windows "open dialog", where you can 

select one or more files. The selected file(s) will be shown in the data file 

field of the Fitter window (cf. Fig. 2.3). 

 

Fig. 2.3: Files are loaded 

You can mark a file in this field by moving up and down with the scroll bar 

and by clicking on a line. The marked file is the one which will be analysed 

in the "selected fitting" and in the "automatic fitting" modes. In the "batch 

fitting" mode, all the loaded files will be analysed in one go. 

On the right hand side, in the data area, the x and the corresponding fre-

quency values in the marked file are shown. The third column (NP(i)) is 0.0 

in each row because a calculation of expected frequencies has not yet been 

performed. The empirical characteristics of the data, however, are deter-

mined automatically: 

Sample size gives the number of observations in your data set, i.e. the em-

pirical parameter N. 

Moments: the first four empirical moments m1 .. m4: 

1
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  – the mean of the frequency distribution; 
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3

3 1

1
( ) x

x

m x m f
N

 
 – the third central moment of the distribution; 

4

4 1

1
( ) x

x

m x m f
N

 
 – the fourth central moment of the distribution; 

 

Ord: Ord's criteria, which are calculated on the basis of the moments: 
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

 and 

3

2
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S

m


 

 (cf. Ord, J. Keith(1972): Families of frequency distributions. London: Grif-

fin). 

Skewness and Excess are given to complete the standard set of characteris-

tics of a distribution. 

Entropy: The entropy of the frequency distribution. 

Repeat rate: The well-know (logarithm-free) alternative for entropy. 

You can also inspect your data graphically. By clicking on the "Graph" but-

ton in the left upper corner of the Fitter window, on the right hand side of 

the green "Fit" button, an extra window with a bar graph is opened (Fig. 

2.4). 

 

Fig 2.4: The graph window with a visualisation of the empirical data 

Make a diagram 

showing your data 
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3. The Modes of Working 

There are four modes of working, one of which is recommended only for 

specially trained experts ("special fitting"). The modes of working are se-

lected by clicking on one of the tabs (cf. Fig. 3.1) 

 

Fig.3.1: The Working Mode Tabs 

 

3.1 Selected Fitting 

This mode, the first tab from left, is most appropriate when the user has a 

specific hypothesis, i.e. when he/she assumes that a specific probability dis-

tribution is a good (or a theoretically justified) model. This distribution can 

be selected by clicking on the down arrow in the dropdown menu just below 

the tabs (cf. Fig.3.2). 

 

Fig 3.2.: The distribution selection menu 

The click opens the menu. You can now either use the scroll bar to find the 

intended distribution and then click on it. Or, you can type the first charac-

ter(s) of the distribution's name, and the programme will put the menu's fo-

cus at once close to the intended one. 

The set of pre-defined distributions which the Altmann Fitter offers for fit-

ting contains a number of probability distributions with "known" parame-

ters. These distribution variants should be used when you want to constrain 

the estimation of parameters because your model fixes the value of one or 

more parameters. When you select such a distribution and start the fitting 

procedure you will be asked to specify the "known" parameters. The pop-up 

dialog will inform you about admitted ranges of these parameters. 

The Altmann Fitter offers assistance for the selection of a distribution in 

case the user is not sure which distributions would be compatible with the 

data. Checking the option "Assisted selection of distribution" (Fig. 3.3) will 

activate an assistant which compares the properties of the data (the data 

must be loaded at this moment) with the available distributions and keeps 

only those in the menu which have a chance to fit with your data. 

Find the ditribution 

you want to test 

Distributions with 

"known" parameters 

Assisted selection of 

a distribution 
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Fig. 3.3: Selection assistant option 

 

When the input data are loaded (see section 2) and a distribution is selected 

the fitting procedure can be started. Before, the used should check the op-

tion (cf. Fig 3.4). Otherwise, the Fitter would present you the results of each 

individual go with one of its built-in initial parameter estimators. And you 

would have to confirm each of these steps by clicking on the "next method" 

button (Fig. 3.5). 

 

Fig 3.4.: "Best method only" option 

 

 

Fig 3.5: The "next method" button 

 

Only very few "insiders", who are familiar with the details of the parameter 

estimators would profit from the information given in these steps. 

Finally, the fitting procedure is started by clicking on the "Fit" button near 

the upper left corner of the Fitter's window (Fig. 3.6).  

Various estimation 

methods 



 
Altmann Fitter (3.1) User Guide 9 

 

Fig. 3.6: The "Fit" button 

The result can be an absolute failure if the selected distribution cannot be 

fitted to the data. there are several possible reasons for such a failure, among 

them the case that too few degrees of freedom are left because the data have 

too few classes with respect to the number of estimated parameters, the case 

that the distribution is simply inappropriate, or the case that the size of the 

sample is very large and the chi-square test becomes invalid (see below). 

The Altmann Fitter tells you what happened in the status field (cf. Fig. 3.7). 

 

Fig. 3.7: The status field reports "No fit" 

In case that no such problem occurred, the programme will show you a 

screen like Fig. 3.8. 

 

Fig. 3.8: Results of a successful fit 

Fitting results 
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The parameter field gives the resulting parameters of the selected distribu-

tion (here, the negative hypergeometric distribution was applied). On the 

right hand side, the chi-square value, its probability (here, it is much larger 

than 0.05, i.e. the goodness-of-fit is evaluated as 'very good'). The test was 

performed with 4 degrees of freedom (the sample has n=8 classes, the dis-

tribution has three estimated parameters, whence df = 8 - 1 - 3 = 4). The 

Coefficient of Discrepancy C, a function of chi-square ( C=X
2
/N ), can often 

be used instead of chi-square when a large sample makes the chi-square test 

invalid. Additionally, the Coefficient of Determination R
2
 is given although 

it is defined for linear functions only. It may, nevertheless, be interesting in 

many cases and help to enlarge experience with this coefficient in connec-

tion with non-linear functions. 

The fitting results can be inspected in four ways: A global evaluation is 

given already in the above-sketched way. Additionally, the individual fre-

quency values can be compared to the theoretically expected values as given 

in the data field on the right hand side. Furthermore, all the results can be 

exported to a .txt or an Excel (.xls) file. You find the corresponding buttons 

in the top button row next to the "Options" button. Clicking on one of these 

two buttons will open a file save dialog. Finally a graph can be opened by 

clicking on the "Graph" button (Fig. 3.9). 

The Graph window offers a rich choice of additional options. The user can 

choose between bar and lines graphs or select a lines plus dots representa-

tion. The numerical values of the data points can be superimposed. The con-

trast of the diagram can be changed by checking the "Colour" option and a 

grid can be shown. The diagram style can be toggled between a regular and 

a "3D" variant. 

Often, extremely skew distributions must be represented. In such cases, 

logarithmic transformations of one or both axes may help to form a clearer 

picture of the data and the theoretical curve. This can be done by checking 

one or both of the "logarithmic repres." check boxes. 

The legends of the diagram can also be changed: click the "Titles" button, 

and a corresponding window will let you change the pre-defined Titles. 

Finally, you can export your diagram in the configured form to the Win-

dows clipboard by clicking on the "Bitmap" button. 

  

The meaning of the 

numbers in the re-
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the calculated val-
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The meaning of the 

numbers in the re-
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Fig. 3.9: Bar graph with empirical (left hand and light grey) and theoretical 

(right hand and darker) values. 
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3.2 Automatic Fitting 

When your model is not specific enough to predict a particular distribution 

or when the user just wants to heuristically find out which distributions 

would, in principle, match with his/her data, the Automatic fitting mode is 

appropriate. To select this mode, click on the second tab in the tab row. It is 

tagged with the descriptor "Automatic fitting". 

One of the loaded data sets in the top widow should be selected before the 

"Fit" button is clicked. The following procedure will apply to the marked 

data set. Altmann Fitter will run through all the more than 200 distributions 

in its inventory except the variants with "known" parameters. While testing 

the distributions, Altmann Fitter displays the individual results in the rows 

of the table field which appears when the  "Automatic fitting" tab is clicked 

(Fig. 3.10). The columns of this table field contain the following informa-

tion: 

Distribution: the name of the tested distribution. 

X
2
: The value of the Chi-square test. 

P(X
2
): The probability of the found X

2 
value. 

C: The value of the coefficient of discrepancy. C = X
2
/N. 

DF: The number of degrees of freedom. Altmann Fitter determines the DF 

number automatically from the number of data classes and the number of 

estimated parameters. 

R
2
: The coefficient of determination. R

2
 is given although it is defined for 

linear functions only. It may, nevertheless, be interesting in many cases and 

help to enlarge experience with this coefficient in connection with non-

linear functions. 

 

Fig. 3.10: The "Automatic fitting" table field 

The results of auto-

matic fitting 
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The cells in the P(X
2
) and C columns are coloured to indicate the goodness-

of fit. A green cell indicates a very good fit, a yellow one an acceptable fit, 

and a red one a poor fit. 

The order in which the rows of the table field are arranged can be changed 

by clicking on one of the column heads. When you are interested in ranking 

the distributions according to their P(X
2
) values, just click on the column 

head with the caption " P(X
2
)". Another click on the same column head will 

reverse the order. 

The content of the table field can be exported to a .txt or to an Excel (.xls) 

file, where you can evaluate your results using other tools. You find the cor-

responding buttons in the top button row next to the "Options" button. 

  

Export your data to 

txt or Excel files 
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3.3 Special Fitting 

This mode requires some specific knowledge and will not be described in 

detail. The control field, which appears when the " Special Fitting " tab is 

clicked is shown in Fig. 3.11. 

 

The control field offer the use of the Altmann-Wimmer (or Wimmer-

Altmann; both name variants are common) distribution – a complex 

distribution which is derived from Wimmer's and Altmann's "Unified 

Theory" (cf. Wimmer, Gejza, and Altmann, Gabriel. 2005. „Unified 

Derivation of Some Linguistic Laws.” In Quantitative Linguistik. Ein 

internationales Handbuch. Quantitative Linguistics. An International 

Handbook, ed. Köhler, Gabriel Altmann, and Rajmund G. Piotrowski, 760-

775. Berlin, New York: de Gruyter, 760-775) 

The distribution has five parameters, whose values and configuration can be 

determined such that a large number of individual distributions which are 

not pre-defined in the inventory of Altmann Fitter can be defined. 

Before using this mode, you should be familiar with the Unified Theory. 

  

An option for ex-

perts: the Wimmer-

Altmann distribu-

tion 
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3.4 Batch Fitting 

The fourth mode, Batch fitting, is extremely useful when a distribution hy-

pothesis is to be tested on a large number of data sets. Previous versions of 

Altmann Fitter did not provide this mode so that the user had to separately 

load each file and repeat the steps of the fitting procedure over and over 

again. 

When the Batch mode is activated by clicking on the fourth tab in the tab 

row, a table field appears in the lower part of the Fitter window, which 

looks like the table field of the Automatic fitting mode. As opposed to that 

field, the user will find a horizontal scroll bar at the bottom of this field, 

which allows moving the window to a large number of columns right to the 

columns which can also be found in the Automatic fitting table field (Fig. 

3.12). 

 

 

Fig. 3.12: Two cuts from the Batch fitting table field. 

Fit to multiple data 

sets in one go 
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These columns contain the complete information which is also given after 

fitting a distribution to an individual data set. The first columns right to the 

'standard' columns, i.e. following "R
2
", show the estimated parameter values 

and are therefore variable as to their size and to their meaning – depending 

on the selected distribution. 

The table can be exported, too, to a .txt or to an Excel (.xls) file, where you 

can evaluate your results using other tools. You find the corresponding but-

tons in the top button row next to the "Options" button. 
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4 Options 

The third button in the top button row in the Altmann Fitter window is the 

"Options" button. Clicking on it opens the menu with optimisation criteria. 

The six fields of this menu can be edited. The default values are as shown in 
Fig. 4.1. 

 

Fig. 4.1: The options menu. 

 

The first four values are the parameters of the Nelder-Mead Simplex algo-

rithm and control the manner in which an optimal estimation for each pa-

rameter is searched for. 

Minimal class size specifies the theoretical (expected) frequency of a data 

class which must be reached or exceeded for the goodness-of-fit Chi-square 

test. Often, this value is set to 5.0 by practitioners, the absolute minimum is 

1.0. The value controls the way how Altmann Fitter conducts the test. The 

program will always try to meet the condition by pooling adjacent classes. If 

the number of degrees of freedom becomes too small by reducing the num-

ber of classes for the test, no fit can be performed. 

Repetitions of iterations is set to one. In some cases, a repetition of the fit-

ting procedure may help to improve the results. If you want to do so just set 

the value to 2. 

The number of optimisation cycles should be set at least to 20 or 30. Com-

plicated distributions may – depending on the data under analysis – require 

more, even 1000 cycles. Unnecessary cycles are avoided by an appropriate 

abortion criterion. 

The default button resets the values to the default values. 

  

Control the optimi-

sation algorithm 
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5 Register of Distributions 

The detailed descriptions of the following distributions can be found in a separate 

documentation. 

 

additive binomial 

additive generalization of the binomial —› additive binomial 

adjusted Poisson —› Gokhale-Poisson Type 1 

Altham-multiplicative binomial 

Arbous-Kerrich-Poisson 

Beall-Rescia 

Bernoulli(an) —› binomial 

beta binomial —› negative hypergeometric 

beta-Pascal 

Bhattacharya-Holla —› Poisson-uniform binomial 

binomial-beta —› negative hypergeometric 

binomial-binomial 

binomial-geometric 

binomial-logarithmic 

binomial-negative binomial 

binomial-Poisson 

Bissinger-binomial 

Bissinger-geometric 

Bissinger-negative binomial 

Bissinger-Poisson 

Borel 

Borel-Tanner 

burnt fingers—› Arbous-Kerrich-Poisson 

centrally truncated Poisson 

Cemuschi-Castagnetto-Poisson 

Chaddha-binomial Type 1 

Chaddha-binomial Type 2 

Cohen 

Cohen-binomial 

Cohen-C-Poisson 

Cohen-geometric 

Cohen-negative binomial 

Cohen-Poisson 

conditional Poisson —› positive Poisson 

confluent hypergeometric 

Consul 

Consul-Jain-Poisson 

Consul-Mittal-binomial with 2 parameters 

Consul-Mittal-binomial with 3 parameters 

Conway-Maxwell-Poisson 
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correlated binomial —› additive binomial 

Cresswell-Froggatt 

Crow-Bardwell —› hyperpoisson Dacey-binomial 

Dacey-negative binomia 

Dacey-Poisson 

Darwin 

digamma 

d. analogous to Borel-Tanner —› Haight-Borel-Tanner 

d. of runs —› Ising-Stevens 

doubly truncated binomal 

doubly turncated geometric 

doubly truncated logarithmic 

doubly truncated negative binomial 

doubly truncated Poisson 

E1CB —› confluent hypergeometric 

Engset —› right truncated binomial 

Erlang-Poisson 

extended Katz  —› hyperpascal 

extended logarithmic 

extended positive binomial 

extended positive negative binomial 

extended positive Poisson 

extended truncated negative binomial —› extended positive negative binomial 

extended truncated Poisson —› extended positive Poisson 

factorial —› Marlow 

Feller-Arley 

Ferreri-meta-Poisson 

Ferreri-Poisson 

Fisher's logarithmic —› logarithmic Fry-Crommelin 

Fry-Poisson 

Furry geometric 

Gegenbauer 

generalized geometric —› Consul 

generalized Hermite —› Gupta-JainHermite 

generalized inflated binomial —› Singh binomial 

generalized inflated Poisson —› PandeyPoisson 

generalized logarithmic series —› Jain-Consul-logarithmic 

generalized negative binomial —› Jain-Consul-negative binomial 

generalized non-central binomial —› Ong-Lee-negative binomial 

generalized Poisson —› Cohen-Poisson; Consul-Jain-Poisson; ModatPoisson 

generalized Pólya-Aeppli  —› Poisson-Pascal 

generalized Waring —› beta-Pascal geometric 

geometric-binomial 

geometric-geometric 

geometric Gram-Charlier —› Shenton-Skees-geometric 
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geometric-logarithmic 

geometric-negative binomial 

geometric-Poisson 

Gokhale-Poisson Type 1 

Gold-PEBL 

Gold-Poisson 

Good 

Good-Engen 

Gross-Harris-geometric I 

Gross-Harris-geometric II 

grouped Poisson —› Morlat-Poisson 

Gupta-Jain-Hermite 

Haight-Borel-Tanner 

Haight-harmonic 

Haight-Poisson-geometric 

Haight-zeta 

Harris-Poisson 

Hermite 

Hillier-Conway-Maxwell-Poisson 

Hirata-Poisson 

hyperbinomial 

hypergeometric 

hypergeometric waiting time —› inverse hypergeometric 

hyper-negative binomial —› hyperpasca1 

hyperpascal 

hyperpoisson 

inflated binomial —› extended positive binomial 

inflated generalized Poisson —› Lingappaiah-Poisson 

inflated negative binomial —› modified negative binomial 

inflated Poisson —› Singh-Poisson 

inflated zero-truncated Poisson —› positive Singh-Poisson 

inverse hypergeometric 

inverse Pólya 

Ising-Stevens 

Jackson-Nickols Type 1 

Jackson-Nickols Type 2 

Jain-Consul-logarithmic 

Jain-Consul-negative binomial 

Jain-Poisson 

Jensen 

Johnson-Kotz 

Katti-Sly 

Kemp's binomial convolution —› Ong-Lee-negative binomial 

Kendall 

Lagrangian Poisson —› Consul-Jain- Poisson 
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Laguerre series —› non central negative binomial 

left truncated binomial 

left truncated logarithmic 

left truncated negative binomial 

left truncated Poisson 

Lexis —› mixed binomial 

linear function Poisson —› Jain-Poisson 

Lingappaiah-Poisson 

logarithmic 

logarithmic negative mixture —› Shenton-Skees-logarithmic 

logarithmic series —› logarithmic 

log series with zeroes —› extended logarithmic 

lost games —› Haight-Borel-Tanner 

MacArthur 

Markov —› Pólya 

Markov-Pólya —› Pólya 

Marlow 

Miller 

mixed binomial 

mixed geometric 

mixed geometric-logarithmic 

mixed logarithmic 

mixed negative binomial 

mixed Poisson 

mixed Poisson-binomial 

mixed positive Poisson 

mixture of two Poisson ds. —› mixed positive Poisson 

modified beta binomial —› Morrison- Brockway 

modified binomial 

modified geometric 

modified logarithmic —› extended logarithmic 

modified negative binomial 

modified Poisson —› Singh-Poisson 

Morlat-Poisson 

Morrison-Brockway 

Morse 

Naor-Poisson 

negative binomial 

negative binomial beta —› beta-Pascal 

negative binomial-binomial 

negative binomial-geometric 

negative binomial-logarithmic 

negative binomial-negative binomial 

negative binomial-Poisson 

negative binomial with excess zeroes —› extended positive negative binomial 

8 
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negative hypergeometric, see also inverse hypergeometric 

Neyman Type A 

Neyman Type B 

Neyman Type C 

non central negative binomial 

Ong-Lee-negative binomial 

Palm 

Palm-Poisson 

Pandey-Poisson 

Pascal —› negative binomial 

Pascal beta —› beta-Pascal 

Pascal-gamma —› negative binomial-logarithmic 

Pascal-Poisson —›  negative binomial- Poisson 

PEBL 

Plunkett-Jain-logarithmic 

point binomial —› binomial 

Poisson 

Poisson-binomial 

Poisson-geometric —› Pólya-Aeppli 

Poisson-Lindley 

Poisson-logarithmic 

Poisson mixture —› mixed Poisson 

Poisson-negative binomial —› Poisson-Pascal 

Poisson-Pascal 

Poisson-Poisson —› Neyman Type A 

Poisson-reciprocal gamma 

Poisson-uniform 

Poisson's exponential binomial limit —› PEBL 

Poisson type —› Consul-Jain-Poisson 

Poisson with excess zeroes —› extended positive Poisson 

Poisson with zeroes —› Singh-Poisson Pólya 

Pólya-Aeppli 

Pólya-Eggenberger —› Pólya 

positive binomial 

positive Cohen-binomial 

positive Cohen-negative binomial 

positive Cohen-Poisson 

positive modified Poisson —› positive Cohen-Poisson 

positive negative binomial 

positive Pandey-Poisson 

positive Poisson 

positive Singh-Poisson 

positive Yule 

Prasad 

pseudo-contagious Poisson —› Singh-Poisson 
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quasi-binomial —› Consul-Mittal-binomial with 2 parameters; Consul- 

Mittal-binomial with 3 parameters 

right truncated binomial 

right truncated Erlang-Poisson 

right truncated geometric 

right truncated logarithmic 

right truncated modified Zipf-Alekseev 

right truncated negative binomial 

right truncated Poisson 

right truncated zeta 

Rutherford 

Rutherford-binomial 

Rutherford-Poisson 

second Erlang —› Erlang-Poisson 

Shenton-Skees-geometric 

Shenton-Skees-logarithmic 

shifted positive Poisson 

shifted zero-truncated Poisson 

short —› Cresswell-Froggatt 

Singh-binomial 

Singh-Poisson 

STER-binomial —› Bissinger-binomial 

STER-geometric —› Bissinger-geometric 

STER-negative binomial —› Bissinger-negative binomial 

STER-Poisson —› Bissinger-Poisson 

Stirling Type 1 

Stirling Type 2 

stuttering Poisson —› Hirata-Poisson 

Suzuki-binomial 

Suzuki-Poisson 

Swensson 

synchronous counting —› Morlat-Poisson 

Syski 

Syski-binomial 

Takács 

Thomas 

Toft-Boothroyd-Poisson Type 1 

Toft-Boothroyd-Poisson Type 2 

trigamma 

truncated Poisson —› positive Poisson 

Waring 

Yule 

zero-truncated negative binomial —› positive negative binomial 

zeta 

Zipf-Mandelbrot 
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6 Supplement 

 

New in Altmann Fitter Version 3.x 

 

binomial-arc-sine 

Chung-Feller 

Dacey3 

discrete Tuldava 

discrete Zipf 

Estoup 

Harris 

Kelly 

Kemp2 

Macutek-geometric 

Martin-Lof-Sverdrup reversed 

right truncated Good 

right truncated Kemp2 

right truncated Salvia-Bolinger 

right truncated Waring 

right truncated Yule 

Salvia-Bolinger 

Wimmer-Altmann family 1 
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6 Formulae and Details of the New Distribu-

tions 
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binomial – arc-sine distribution 
 

1
, 0,1, 2, ,x

n x x
P x n

n x x

      
   

  
 

 

Parameter limits: 

n is a positive integer or zero 

0 1   

 

Recurrence formula 

 

  

 
1

1
x x

x n x
P P

x n x






  


 
 

0

1n
P

n

  
  
 

 

 

 

  

Chung-Feller distribution 

 

2
2 2 2

2 , 0,1, ,n

x

n x x
P x n

n x x


  

   
  

 

 

Parameter limits: 

n is a positive integer or zero 

Recurrence formula 

 

 

1

1
1

2

1

2

x x

x n x

P P

x n x


 
   

 


 
  

 

 

 

2

0

2
2 n

n
P

n

 
  
 
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Dacey 3 distribution 

 
2

, 0,1,2, ,
1

x

m n x

n x
P x n

m n

n

   
 

 
 

  
 
 

 

 

Parameter limits: 

n is a positive integer or zero 

1m   

Recurrence formula 

 

1

1

1
x x

n x
P P

m n x


 


  
 

0

1

1

m
P

m n




 
 

 

 

discrete Tuldava ( = generalized Whitworth) distribution 

 

1n

x

j x

P c a b
j

 
  

 
 ,   1,2, ,x n  

 

Parameter limits: 

0b

b
a

n



 
 

n is a positive integer 

Normalization constant 

 

1
c

n a b



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Recurrence formula 

  
1 , 2,3, ,

1
x x

b
P P x n

n a b x
  

 
 

 

 
1

1 1n

j x

P a b
n a b j

 
  

  
  

 

 

discrete Zipf distribution 
 

1

1
, 1,2,

1

x

x b

x
P x n

n b

n

  
 

 
 

 
 

 

  

Parameter limits: 

1b   

n is a positive integer 

Recurrence formula 

 

11
1

x x

b
P P

x


 
  

 
 

1

1

1

P
n b

n


 

 
 
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Estoup distribution 

 

, 1,2, ,x

c
P x n

x
   

 

Parameter limits: 

n is a positive integer 

 

Normalization constant 

 

1

1
c

n 

  

,  hence 
  

1

1
xP

x n 


  
 

 

Recurrence formula 

 

 
1 1

1 1
1 ,

1
x xP P P

x n 


 
   

   
 

 

 

Harris distribution 

 

1
x

n

xN
P

N nN n

x

 
 
 


   

 
 

,   x=0,1,…,n 

Parameter limits: 

n is a positive integer or zero 

0N   

Recurrence formula 

 

1

1
x x

n x
P P

N n x


 


 
 

0

N
P

N n



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Kelly distribution 

 

, 1, 2, ,
1

x

n

n x
P x n

n

x





 
 
 

 
  

 
 

 

 

Parameter limits: 

n is a positive integer 

0   

 

Recurrence formula 

 

1

1
x x

n x
P P

n x 


 


 
 

1
1

P
n






 
 

 

Kemp 2 distribution 
 

22 1

2 2

a x

x

a xa
P

a x x

  
   

   
,    x=0,1,2,… 

 

Parameter limits: 

a>0  

 

Recurrence formula 

 

0 1
1 ( 2 1)( 2 2)

, , 1,2,...
2 4 ( )

a

x x
a x a x

P P P x
x a x


    

   
 
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Mačutek-geometric distribution 

 

1 1 , 1,2, ,
1

x

x

a
P cp x n

n x

  
   

  
 

Normalization constant 

1

1

1

1 1 1 1
,1,1 ,1, 1

1

n
n

n

p
c ap n

p p p p







     
                 

 

 

Parameter limits: 

n is a positive integer 

1a    

p>0 

Recurrence formula 

1
1 1

1 2
x x

ap ap

a aP p P
x n x n a



 
     

     
 

 for 1a    

 
12

1
x x

p
P p P

x n


 
  
   

 for 1a    

 

 

Martin-Löf -Sverdrup distribution (reversed form) 
 

, 0,1, ,
1

1

x

n x

n m
P x m

n

n m

 
 

 
 

 
 

  

 

 

Parameter limits: 

n is a positive integer or zero 

m is a positive integer or zero 
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n m  

 

Recurrence formula 

 

0

1

1

n m
P

n

 



    

1

1

1
x x

m x
P P

n x


 


 
  

 

 

right truncated Good distribution 

 

, 1, 2, ,
x

x a

cp
P x n

x
   

Normalization constant 

 
    

1

, ,1 , , 1n
c

p p a p p a n


   
 

Parameter limits: 

p>0 

a - no constraints 

n is a positive integer 

Recurrence formula 

1

1
1

a

x xP p P
x



 
  

 
 

1P cp  
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right truncated Kemp 2 distribution 

 
22 1

2 2

a x

x

a xa
P c

a x x

  
   

   
,    x=0,1,2,…,n 

 

Parameter limits: 

a>0  

n is a positive integer or zero 

c - normalization constant 

 

Recurrence formula 

 

0 1
1 ( 2 1)( 2 2)

, , 1,2,...,
2 4 ( )

a

x x
a x a x

P c P P x n
x a x


    

   
 

 

 

 

right truncated Salvia-Bolinger distribution 

 

   

 

0

1
1,2, ,

1 !

xP c x

x
c x n

x



  

 

 




 

Parameter limits: 

0 1   

Recurrence formula 

 

1

0

1
x x

x
P P

x

P c













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right truncated Waring distribution 

 
 

 
 

, 0,1,2, ,
1

x

x x

a
P c x n

a b
 

 
 

Parameter limits: 

a>=0 

b>0 

n is a positive integer or zero 

c - normalization constant 

Recurrence formula 

1

1
x x

a x
P P

a b x


 


 
 

1P c  

 

right truncated Yule distribution 

 
 1

!
, 0,1,2, ,

1
x x

bx
P c x n

b


 


 

Parameter limits: 

b>0 

n is a positive integer or zero 

c - normalization constant 

Recurrence formula 

1
1

x x

x
P P

b x


 
 

1P cb  
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Salvia-Bolinger distribution 

   

 

0

1
1,2,3,

1 !

x

x

P x

x
P x

x



  

 

 
 



 

Parameter limits: 

0 1   

Recurrence formula 

1

0

1
x x

x
P P

x

P














 

 


