Abstract

The scientific monograph analyses recent state of liquid basic physical properties knowledge, hydrodynamic and hydraulic relations of liquids which are used in water jet technology and it also briefly introduces basic elements of hydraulic systems. It aptly describes scientific techniques of production process simulation and mathematical model creation. The paper comprehensively identifies individual categories of factors primary and secondary affecting performance, quality and price of hydroerosion progressive processes.

In the conclusion, the authors submit their own scientific and research results and their practical verifications and recommendations for practice.

The monograph is for scientific and research people in managerial, economic and technical scientific area.

Key words: Progressive hydroerosion process, Hydroerosion categories and factors for AWJM.

This monograph was written on the base of the project ITMS 26220120060 performed within the Centre of Technical, Environmental and Human Risks Research Management for Sustainable Development of Engineering Production and Products, and the project KEGA no. 049TUKE-4/2012 called Using of Scientific-research Results for Teaching Environmental Basics and Environmental Engineering by means of multimedia technology.

Reviewers: Dr. h.c. prof. Karol Vasilko, M.Sc., DrSc. Dr.h.c. prof. Dr. Janko Hodolic, prof. Mgr. Juraj Ladomerský, CSc.

Edition of Scientific and Technical Literature

© Dr. h.c.prof. Miroslav Badida, M.Sc., PhD., Assoc. prof. Ján Kmec, M.Sc. PhD., Assoc. prof. Lýdia Sobotová, M.Sc., PhD., Ľuba Bičejová, M.Sc., PhD., Miroslav Gombár, M.Sc., PhD.

ISBN 978-3-942303-20-0 EAN 9783942303200

Contents

Introduction		
1.	AWJM Technological Process Overview	2
1.1	Water Jet Cutting Principle	2
1.1.1	Cutting Process and Cutting Complex Assembly	3
1.2	Recommended Quality for Water Jet Cutting	8
1.3	Abrasive	9
1.3.1	Garnet GMA Abrasive	9
1.3.2	Abrasive Materials Used in Practice	11
1.4	Cutting Area Surface and Application Potentials for Technology	15
1.5	Water Jet Cutting Head	18
1.6	Water Jet Quality and Cutting Performance	21
1.6.1	Focusing by Means of Additives	21
1.6.2	Focusing by Means of High-Pressure Flow	21
1.6.3	Nozzles for Cutting	22
1.7	Approaches in Terms of High-Pressured Water Flow Change	22
1.8	Some Workplaces Equipped with High-Pressured Water Flow Distribution	24
1.8.1	Some High-Pressured Water Distribution Workplaces Abroad	32
2.	Categorization of Hydroerosion Process Factors	34
2.1	Category of Physical Factors	36
2.2	Category of Hydrodynamic Factors	37
2.3	Category of Technical Factors	42
2.4	Category of technological factors	47
2.5	Category of Environmental Factors	52
3.	High Pressured Water Flow Eeffect on Cutting Area Surface Research	55
3.1	Flow Change Combinations Sizing for Water Jet Distribution	55
3.2	Experimental Testing Methodology	57
3.3	Analysis and Processing of Specimens	62
3.4	Evaluation of Analysed and Processed Specimens	72
3.4.1	Evaluation Based on 1st Category of Factors	73
3.4.2	Evaluation Based on 2nd Category of Factors	76
3.4.3	Evaluation Based on 3rd Category of Factors	78
3.4.4	Evaluation Based on 4th Category of Factors	81
3.5	Verification and Recommendations for Practice	82
4.	Introduction into Environmentalistic Requirements of WJ and AWJ Technologies	89

4.1	Noise	91
4.1.1	Reducing of Noise	91
4.2	Vibration	95
4.3	Waterjet Technology and its Environmental Problems	100
4.4	Description of Abrasive Material Recycling	102
4.4.1	Possibilities of Abrasive Recycling under Water Flow	103
4.4.2	Cutting with Recycling Abrasive	104
4.5	Water Specifications	114
4.5.1	Suspended Solids	115
4.5.2	Water Supply	115
4.5.3	Hydraulic Oil Cooling	115
4.6	Recommendation for Water Treatment	117
4.7	Requirement for the Minimal Floor Space by Choosing of Pump	118
4.8	Go Green and Save Green	119
Refer	120	