INFLUENCE OF STRUCTURE ADJUSTMENT OF GATING SYSTEM OF CASTING MOULD UPON THE QUALITY OF DIE CAST

by

Štefan Gašpár
Ján Paško
Ján Majerník

2017
Abstract

The monograph is devoted to study of influence of structure adjustment of gating system of casting mould upon the quality of diecast parts. The monograph offers characterization of diecasting technology, methodology of designing of mould and of its individual parts. At the same time mutual relation between the errors occurring in diecast parts and structural as well as technological mistakes which induced these errors. Performed were the experiments with series of diecast parts made of AlSi alloy focused on analysis of influence of the diecast part moulding, of the sprue width and of the ingate height upon the qualitative properties of diecast parts. Those were represented by the selected mechanical properties – i.e. by permanent deformation and by surface hardness – by properties representing diecast part homogeneity – by porosity and percentage proportion of contractions. The measurements detected mutual relations among selected structure adjustments of the gating system and qualitative properties of diecast part and among those properties as such.

The monograph is intended mainly for students, postgraduates and pedagogues at technical universities as well as to for broad scientific and expert public and technologists and foundry shop workers.

Key words: die casting, mould, adjustment of gating system, quality of cast

Reviewers: Dr.h.c. Prof. Vladimír Kročko, M.Sc., PhD.
Assoc. Prof. Jozef Malik, M.Sc., PhD.
Prof. em. Emil Ragan, M.Sc., PhD.

Edition of Scientific and Technical Literature

© Assoc. Prof. Štefan Gašpár, M.Sc., PhD., Prof. Ján Paško, M.Sc., PhD., Ján Majerník, M.Sc., PhD.

This monograph has been prepared within the project VEGA 1/0041/16.

ISBN 978-3-942303-47-7
INTRODUCTION

1 DIE CASTING TECHNOLOGY

1.1 Die Casting Machines
 1.1.1 Hot-chamber Die Casting Machines
 1.1.2 Cold-chamber Die Casting Machines

1.2 Main Technological Parameters of Die Casting of Metal
 1.2.1 Parameters of Moulding Press
 1.2.2 Temperature Parameters of Die Casting
 1.2.3 Parameters Following from the Melt Properties

2 MOULDS DESIGNED FOR DIE CASTING OF METALS

2.1 Process of a New Mould Designing and Manufacturing
2.2 Mould Production Material
2.3 Design Methodology of Gating System of Die Casting Mould for Die Casting of Metals
 2.3.1 Analysis of Liquid Metal Flow
 2.3.2 Selection of the Most Suitable Position for Placement of the Gate and of the Venting Gate
 2.3.3 Calculation of Maximal Time of Mould Cavity Loading and Selection of Flowing Speed in the Ingate
 2.3.4 Dividing of the Die Cast into Segments of Gate Parts
 2.3.5 Determination of the Fin Volume
 2.3.6 Calculation of Total Area of the Ingate and Selection of the Ingate Height
 2.3.7 PQ2 Analysis and Machine Locking Force
 2.3.8 Period of Mould Cavity Loading and Ingate Area Calculated for the Individual Segments
 2.3.9 Cross Section of Venting Channels
 2.3.10 Selection of Type of the Gate, of the Sprue and of Their Shape

3 DIE CASTING DEFECTS

3.1 Classification of Casting Defects
3.2 Defects Types of Castings and Causes of their Occurrence
 3.2.1 Shape, Dimensions and Weight Defects
 3.2.2 Surface Defects
 3.2.3 Continuity Interruption
 3.2.4 Cavities
 3.2.5 Macroscopic Inclusions and Macrostructure Defects
 3.2.6 Structure Defects
 3.2.7 Chemical Composition Defects, Incorrect Physical or Mechanical Properties
INTRODUCTION

Die casting technology is relatively modern line of foundry industry and metallurgy. It dates back to the second half of the 19th century. Initially, die casting with hot chamber machines was used. Massive utilization of cold chamber machines occurred in the 1920s. In the course of one hundred years of practise the technology progressed incredibly among foundry technologies. Diecast parts are applied almost in all sectors of the industry. The most widespread materials used in die casting technology are aluminium alloys owing to their low specific weight, good machinability, and castability.

Although the technology is rather modern, the elaboration of its theoretical basis reaches a good level. However, majority of authors focus on technology and technological parameters of die casting and on their influence upon the quality of diecast parts. Unjustly, yet quite often both the structure of the die casting machine and design of its individual components are neglected so is the impact of the structure on the diecast quality.

The submitted monograph deals with the structure of a gating system of a die casting mould and with its influence upon the quality of diecast part. The introductory chapters describe die casting technology. Analysed is a principle of technology and description of the individual groups of die casting machines and their function. The following chapter is devoted to the mould, to its structure, to methodology of design and of draft of the gating system as well as to influence of the individual elements of the gating system upon the quality of diecast parts. The separate chapter describes the most frequently occurring errors of diecast parts, reasons of their occurrence and methods of prevention. The conclusion of theoretical chapter contains the most commonly applied simulation programs facilitating design of structure of moulds and gating systems.

The experimental chapter focuses on a solution of the selected issue, describes methodology of the individual tests, summarizes the conclusions, and determines possibilities of application of further knowledge gained through preparation of the thesis.